1 |
Li X, Hu H, Shi Y, Liu Y, Zhou M, Huang Z, Li J, Ke G, Chen M, Zhang XB. PtSnBi Nanoplates Enable Photoacoustic Imaging-Guided Highly Efficient Photothermal Tumor Ablation. Chemistry 2023;29:e202203227. [PMID: 36484618 DOI: 10.1002/chem.202203227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Ma Y, Guo C, Qu F, Lin H. NIR-II driven photocatalytic hydrogen peroxide-supply on metallic copper-nickel selenide (Cu-Ni(0.85)Se) nanoparticle for synergistic therapy. J Colloid Interface Sci 2023;641:113-25. [PMID: 36924541 DOI: 10.1016/j.jcis.2023.02.118] [Reference Citation Analysis]
|
3 |
Li B, Pang E, Zhao S, Deng G, Wang S, Wang B, Wu J, Niu G, Song X, Lan M. Aggregation-Enhanced Photophysical Performance of D-π-A Structured Hemicyanine for NIR-II Fluorescent and Photoacoustic Imaging-Guided Photothermal Therapy. Chemical & Biomedical Imaging 2023. [DOI: 10.1021/cbmi.2c00004] [Reference Citation Analysis]
|
4 |
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023;11:1607-24. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Reference Citation Analysis]
|
5 |
Ye S, Xiao H, Chen J, Zhang D, Qi L, Peng T, Gao Y, Zhang Q, Qu J, Wang L, Liu R. Copperphosphotungstate Doped Polyanilines Nanorods for GSH-Depletion Enhanced Chemodynamic/NIR-II Photothermal Synergistic Therapy. Int J Nanomedicine 2023;18:1245-57. [PMID: 36937549 DOI: 10.2147/IJN.S399026] [Reference Citation Analysis]
|
6 |
Liu G, Yan C, Kuang D, Song L. Broadband optical absorption and photothermal properties of partially disordered MoSe2 nanospheres. Materials Chemistry and Physics 2023;293:126948. [DOI: 10.1016/j.matchemphys.2022.126948] [Reference Citation Analysis]
|
7 |
Liu J, Xiong Y, Gao Y, Xu X, Chen K, Shen Q, Huang W, Fan Q, Wang Q. Molecular Oligomerization and Donor Engineering Strategies for Achieving Superior NIR-II Fluorescence Imaging and Thermotherapy under 1064 nm Laser Irradiation. Small 2023;19:e2205640. [PMID: 36366913 DOI: 10.1002/smll.202205640] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Meivita MP, Lee D, Naikar JS, Go SX, Teoh WC, Tan YS, Bajalovic N, Loke DK. An Efficient, Short Stimulus PANC-1 Cancer Cell Ablation and Electrothermal Therapy Driven by Hydrophobic Interactions. Pharmaceutics 2022;15. [PMID: 36678734 DOI: 10.3390/pharmaceutics15010106] [Reference Citation Analysis]
|
9 |
Wang Y, Jia L, Hu T, Yang Z, Yang C, Lin H, Zhang F, Yu K, Qu F, Guo W. Hollow Nanooxidase Enhanced Phototherapy Against Solid Tumors. ACS Appl Mater Interfaces 2022;14:56597-612. [PMID: 36512413 DOI: 10.1021/acsami.2c17862] [Reference Citation Analysis]
|
10 |
Marino A, Battaglini M, Tapeinos C, Larrañaga A, Ciofani G. Innovative nanotechnology tools for the functional control and tracking of human stem cells. Materials Today Advances 2022;16:100298. [DOI: 10.1016/j.mtadv.2022.100298] [Reference Citation Analysis]
|
11 |
Li X, Li R, Gao X, Li B, Xu H, Shan L, Wang Y, Dong L. Significant effect on the photo conversion performance of non-stoichiometric tungsten oxide with various reaction solvents. Journal of Luminescence 2022;252:119388. [DOI: 10.1016/j.jlumin.2022.119388] [Reference Citation Analysis]
|
12 |
Xie H, Geng S, Shao J, Luo G, Liu Q, Wang J, Chen Y, Chu PK, Li Z, Yu XF. Niobium Diselenide Nanosheets: An Emerging Biodegradable Nanoplatform for Efficient Cancer Phototheranostics in the NIR-II Window. Adv Healthc Mater 2022;11:e2202126. [PMID: 36165220 DOI: 10.1002/adhm.202202126] [Reference Citation Analysis]
|
13 |
Zhao Y, Wang S, Chen A, Kankala RK. Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews 2022;472:214765. [DOI: 10.1016/j.ccr.2022.214765] [Reference Citation Analysis]
|
14 |
Miao W, Ti Y, Lu J, Zhao J, Xu B, Chen L, Bao N. Mesoporous nanoplatform integrating photothermal effect and enhanced drug delivery to treat breast cancer bone metastasis. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1088823] [Reference Citation Analysis]
|
15 |
Wang X, Zhu L, Gu Z, Dai L. Carbon nanomaterials for phototherapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0574] [Reference Citation Analysis]
|
16 |
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022;26:61. [DOI: 10.1186/s40824-022-00308-z] [Reference Citation Analysis]
|
17 |
Zhang Y, Li S, Fang X, Miao B, Wang Y, Liu J, Nie G, Zhang B. Copper decorated Ti3C2 nanosystem with NIR-II-induced GSH-depletion and reactive oxygen species generation for efficient nanodynamic therapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0599] [Reference Citation Analysis]
|
18 |
Du P, An R, Liang Y, Lei P, Zhang H. Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews 2022;471:214745. [DOI: 10.1016/j.ccr.2022.214745] [Reference Citation Analysis]
|
19 |
Tian C, Xue X, Chen Y, Liu R, Wang Y, Ye S, Fu Z, Luo Y, Wang S, He X, Pang H. Phosphotungstate Acid Doped Polyanilines Nanorods for in situ NIR-II Photothermal Therapy of Orthotopic Hepatocellular Carcinoma in Rabbit. IJN 2022;Volume 17:5565-5579. [DOI: 10.2147/ijn.s380370] [Reference Citation Analysis]
|
20 |
Jing Z, Du Q, Zhang X, Zhang Y. Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal 2022;446:137147. [DOI: 10.1016/j.cej.2022.137147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Yang L, Chen S, Wei H, Luo Y, Cong F, Li W, Hong L, Su J. Low-Temperature Photothermal Therapy Based on Borneol-Containing Polymer-Modified MXene Nanosheets. ACS Appl Mater Interfaces 2022. [PMID: 36178205 DOI: 10.1021/acsami.2c12839] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
22 |
Wang M, Yang R, Tang S, Deng Y, Li G, Zhang D, Chen D, Ren X, Gao F. In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Low‐power Laser. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202208721] [Reference Citation Analysis]
|
23 |
Zhang H, Zhang L, Zhong Y, Zhou J, Li Y, Zhang P, Xi J, Shi W, Qian H. A radical photochromic metal-organic framework for boosting NIR-II photothermal conversion and therapy. Chem Commun (Camb) 2022. [PMID: 36098177 DOI: 10.1039/d2cc04064f] [Reference Citation Analysis]
|
24 |
Dang S, Mo Y, Zeng J, Xu Y, Xie Z, Zhang H, Zhang B, Nie G. Three birds with one stone: oxygen self-supply engineering palladium nanocluster/titanium carbide hybrid for single-NIR laser-triggered synergistic photodynamic-photothermal therapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0268] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
|
25 |
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.948705] [Reference Citation Analysis]
|
26 |
Tu Z, Zhu Y, Xiao Y, Chen J, Shannon S, Zhang F, Li Z, Zhou J, Hu H, Ho T, Gao W, Shao D, Leong KW. Scavenging Tumor‐Derived Small Extracellular Vesicles by Functionalized 2D Materials to Inhibit Tumor Regrowth and Metastasis Following Radiotherapy. Adv Funct Materials. [DOI: 10.1002/adfm.202205663] [Reference Citation Analysis]
|
27 |
Lv C, Kang W, Liu S, Yang P, Nishina Y, Ge S, Bianco A, Ma B. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS Nano 2022. [PMID: 35816172 DOI: 10.1021/acsnano.2c05532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Chen W, Liang X, Fu W, Wang S, Gao X, Zhang Z, Fang Y. Phase Change Composite with Core–Shell Structure for Photothermal Conversion and Thermal Energy Storage. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c01608] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
29 |
Lin X, Li F, Gu Q, Wang X, Zheng Y, Li J, Guan J, Yao C, Liu X. Gold-seaurchin based immunomodulator enabling photothermal intervention and αCD16 transfection to boost NK cell adoptive immunotherapy. Acta Biomater 2022;146:406-20. [PMID: 35470078 DOI: 10.1016/j.actbio.2022.04.029] [Reference Citation Analysis]
|
30 |
Ding X, Wang T, Bai S, Wan Y, Zhu S, Li T, Peng N, Qiu T, Liu Y. Multifunction in One Nanoparticle for Anticancer Therapy: Bowl-Shaped Au@PDA Yolk-Shell NPs. ACS Appl Mater Interfaces 2022;14:27733-42. [PMID: 35675694 DOI: 10.1021/acsami.2c07671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Liu X, Geng P, Yu N, Xie Z, Feng Y, Jiang Q, Li M, Song Y, Lian W, Chen Z. Multifunctional Doxorubicin@Hollow-Cu9S8 nanoplatforms for Photothermally-Augmented Chemodynamic-Chemo therapy. Journal of Colloid and Interface Science 2022;615:38-49. [DOI: 10.1016/j.jcis.2022.01.156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
32 |
Zhang L, Forgham H, Huang X, Shen A, Davis T, Qiao R, Guo B. All-in-one inorganic nanoagents for near-infrared-II photothermal-based cancer theranostics. Materials Today Advances 2022;14:100226. [DOI: 10.1016/j.mtadv.2022.100226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
|
33 |
Lan P, Chen H, Guo Y, Li Y, Zheng Y, Zhang Y, Li M, Guo Z, Liu Z. NIR-II Responsive Molybdenum Dioxide Nanosystem Manipulating Cellular Immunogenicity for Enhanced Tumor Photoimmunotherapy. Nano Lett 2022. [PMID: 35623050 DOI: 10.1021/acs.nanolett.2c00899] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
34 |
Zheng X, Liu Y, Liu Y, Zhang T, Zhao Y, Zang J, Yang Y, He R, Chong G, Ruan S, Xu D, Li Y, Dong H. Dual Closed-Loop of Catalyzed Lactate Depletion and Immune Response to Potentiate Photothermal Immunotherapy. ACS Appl Mater Interfaces 2022. [PMID: 35578899 DOI: 10.1021/acsami.2c07254] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Zhu Y, Tang X, Liu Q, Xia Y, Zhai X, Zhang H, Duan D, Wang H, Zhan W, Wu L, Zheng N, Lv W, Wang Y, Zhou M. Metallic Carbonitride MXene Based Photonic Hyperthermia for Tumor Therapy. Small 2022;:e2200646. [PMID: 35510984 DOI: 10.1002/smll.202200646] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
36 |
Min G, Hong F, Shi C, Zhao Q, Lin N, Liu XY. Biomimetic synthesis of 2D ultra-small copper sulfide nanoflakes based on reconfiguration of the keratin secondary structure for cancer theranostics in the NIR-II region. J Mater Chem B 2022;10:3152-61. [PMID: 35355042 DOI: 10.1039/d2tb00046f] [Reference Citation Analysis]
|
37 |
Wang Z, Wang Y, Sun X, Zhou J, Chen X, Xi J, Fan L, Han J, Guo R. Supramolecular Core-Shell Nanoassemblies with Tumor Microenvironment-Triggered Size and Structure Switch for Improved Photothermal Therapy. Small 2022;:e2200588. [PMID: 35277929 DOI: 10.1002/smll.202200588] [Reference Citation Analysis]
|
38 |
Zhang S, Jin L, Liu J, Wang Y, Zhang T, Liu Y, Zhao Y, Yin N, Niu R, Xue D, Yu Y, Yang Y. Novel FeF 2 /Fe 1–x S Nanoreactor‐Mediated Mitochondrial Dysfunction via Oxidative Stress and Fluoride Ions Overloaded for Synergistic Chemodynamic Therapy and Photothermal Therapy. Adv Funct Materials 2022;32:2113397. [DOI: 10.1002/adfm.202113397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
39 |
Shi Z, Tang J, Lin C, Chen T, Zhang F, Huang Y, Luan P, Xin Z, Li Q, Mei L. Construction of iron-mineralized black phosphorene nanosheet to combinate chemodynamic therapy and photothermal therapy. Drug Deliv 2022;29:624-36. [PMID: 35174748 DOI: 10.1080/10717544.2022.2039810] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
40 |
Hiremath N, Kumar R, Hwang KC, Banerjee I, Thangudu S, Vankayala R. Near-Infrared Light Activatable Two-Dimensional Nanomaterials for Theranostic Applications: A Comprehensive Review. ACS Appl Nano Mater 2022;5:1719-33. [DOI: 10.1021/acsanm.2c00170] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|
41 |
Wang Y, Zhen W, Jiang X, Li J. Driving Forces Sorted In Situ Size‐Increasing Strategy for Enhanced Tumor Imaging and Therapy. Small Science. [DOI: 10.1002/smsc.202100117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
42 |
Lu JY, Zhou X, Yang J, Zhou Y, He B, Huang WT, Wang Y, Guo Z. Migration inhibition and selective cytotoxicity of cobalt hydroxide nanosheets on different cancer cell lines. New J Chem 2022;46:10289-98. [DOI: 10.1039/d2nj01466a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
43 |
Chan SSY, Go SX, Meivita MP, Lee D, Bajalovic N, Loke DK. Ultra-efficient highly-selective MFC-7 cancer cell therapy enabled by combined electric-pulse carbon 1D-nanomaterials platforms. Mater Adv . [DOI: 10.1039/d1ma01118a] [Reference Citation Analysis]
|
44 |
Liu F, Liu L, Liu D, Wei P, Feng W, Yi T. An excipient-free “sugar-coated bullet” for the targeted treatment of orthotopic hepatocellular carcinoma. Chem Sci . [DOI: 10.1039/d2sc03365h] [Reference Citation Analysis]
|
45 |
Hu W, Zhen W, Zhang M, Wang W, Jia X, An S, Wang Y, Guo Z, Jiang X. Development of Nickel Selenide@polydopamine Nanocomposites for Magnetic Resonance Imaging Guided NIR-II Photothermal Therapy. Adv Healthc Mater 2021;10:e2101542. [PMID: 34643341 DOI: 10.1002/adhm.202101542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
46 |
Bian W, Wang Y, Pan Z, Chen N, Li X, Wong W, Liu X, He Y, Zhang K, Lu Y. Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers. ACS Appl Nano Mater 2021;4:11353-85. [DOI: 10.1021/acsanm.1c01903] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
|
47 |
Qin Z, Qiu M, Zhang Q, Yang S, Liao G, Xiong Z, Xu Z. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal-chemodynamic synergistic antitumor therapy. J Mater Chem B 2021;9:8882-96. [PMID: 34693959 DOI: 10.1039/d1tb01629f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
|