BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liang K, Sun H, Yang Z, Yu H, Shen J, Wang X, Chen H. Breaking the Redox Homeostasis: an Albumin‐Based Multifunctional Nanoagent for GSH Depletion‐Assisted Chemo‐/Chemodynamic Combination Therapy. Adv Funct Mater 2021;31:2100355. [DOI: 10.1002/adfm.202100355] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Li S, Chu X, Dong H, Hou H, Liu Y. Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2023;479:215004. [DOI: 10.1016/j.ccr.2022.215004] [Reference Citation Analysis]
2 Yang L, Zhu H, Zhao R, Zhang Z, Liu B, Gong H, Zhu Y, Ding H, Gai S, Feng L. Tumor microenvironment activated glutathione self-depletion theranostic nanocapsules for imaging-directed synergistic cancer therapy. Chemical Engineering Journal 2022;450:138137. [DOI: 10.1016/j.cej.2022.138137] [Reference Citation Analysis]
3 Cao Y, Zhang S, Lv Z, Yin N, Zhang H, Song P, Zhang T, Chen Y, Xu H, Wang Y, Liu X, Zhao G, Zhang H. An Intelligent Nanoplatform for Orthotopic Glioblastoma Therapy by Nonferrous Ferroptosis. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209227] [Reference Citation Analysis]
4 Fang Z, Zhang M, Kang R, Cui M, Song M, Liu K. A cancer cell membrane coated nanoparticles-based gene delivery system for enhancing cancer therapy. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122415] [Reference Citation Analysis]
5 Fu Z, Du H, Meng S, Yao M, Zhao P, Li X, Zheng X, Yuan Z, Yang H, Cai K, Dai L. Tumor-targeted dual-starvation therapy based on redox-responsive micelle nanosystem with co-loaded LND and BPTES. Mater Today Bio 2022;16:100449. [PMID: 36238964 DOI: 10.1016/j.mtbio.2022.100449] [Reference Citation Analysis]
6 Hou L, Gong F, Han Z, Wang Y, Yang Y, Cheng S, Yang N, Liu Z, Cheng L. H X V 2 O 5 Nanocatalysts Combined with Ultrasound for Triple Amplification of Oxidative Stress to Enhance Cancer Catalytic Therapy. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202208849] [Reference Citation Analysis]
7 Lu H, Xu S, Ge G, Guo Z, Zhao M, Liu Z. Boosting Chemodynamic Therapy by Tumor-Targeting and Cellular Redox Homeostasis-Disrupting Nanoparticles. ACS Appl Mater Interfaces 2022. [PMID: 36149803 DOI: 10.1021/acsami.2c11091] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li H, Liu Y, Huang B, Zhang C, Wang Z, She W, Liu Y, Jiang P. Highly Efficient GSH-Responsive "Off-On" NIR-II Fluorescent Fenton Nanocatalyst for Multimodal Imaging-Guided Photothermal/Chemodynamic Synergistic Cancer Therapy. Anal Chem 2022. [PMID: 35816734 DOI: 10.1021/acs.analchem.2c01738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang M, Zhou G, Pan Y, Xue Y, Zhu S, Yan Y, Yuan H, Li S, Huang Q. Design and fabrication of cascade novel Fenton catalytic nanocomposite as theranostic agent for chemodynamic/photothermal synergistic tumor therapy. Materials & Design 2022;219:110794. [DOI: 10.1016/j.matdes.2022.110794] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yu X, Wang X, Sun L, Yamazaki A, Li X. Tumor microenvironment regulation - enhanced radio - immunotherapy. Biomaterials Advances 2022;138:212867. [DOI: 10.1016/j.bioadv.2022.212867] [Reference Citation Analysis]
11 Jin X, Zhao H, Chao Z, Wang X, Zhang Q, Ju H, Liu Y. Self-assembled Cupric Oxide Nanoclusters for Highly efficient chemodynamic therapy. Chem Asian J 2022;:e202200296. [PMID: 35713338 DOI: 10.1002/asia.202200296] [Reference Citation Analysis]
12 Liu H, Jiang R, Lu Y, Shan B, Wen Y, Li M. Biodegradable Amorphous Copper Iron Tellurite Promoting the Utilization of Fenton-Like Ions for Efficient Synergistic Cancer Theranostics. ACS Appl Mater Interfaces 2022. [PMID: 35704874 DOI: 10.1021/acsami.2c03975] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Chen T, Yao T, Pan H, Peng H, Whittaker AK, Li Y, Zhu S, Wang Z. One-step nanoarchitectonics of a multiple functional hydrogel based on cellulose nanocrystals for effective tumor therapy. Nano Res . [DOI: 10.1007/s12274-022-4455-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Gao F, Sun M, Zhang J, Chang Y, Gao W, Ma G, Ma X, Guo Y. Fenton-like reaction and glutathione depletion by chiral manganese dioxide nanoparticles for enhanced chemodynamic therapy and chemotherapy. Journal of Colloid and Interface Science 2022;616:369-78. [DOI: 10.1016/j.jcis.2022.02.060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Liu X, Geng P, Yu N, Xie Z, Feng Y, Jiang Q, Li M, Song Y, Lian W, Chen Z. Multifunctional Doxorubicin@Hollow-Cu9S8 nanoplatforms for Photothermally-Augmented Chemodynamic-Chemo therapy. Journal of Colloid and Interface Science 2022;615:38-49. [DOI: 10.1016/j.jcis.2022.01.156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
16 Lv B, Ma J, Wang Y, Qu X, Qiu J, Hua K. Mitochondria-Targeted Mesoporous Organic Silica Nanoplatforms for Overcoming Cisplatin Resistance by Disturbing Mitochondrial Redox Homeostasis. Front Chem 2022;10:875818. [DOI: 10.3389/fchem.2022.875818] [Reference Citation Analysis]
17 Yu X, Wang X, Yamazaki A, Li X. Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. J Mater Chem B 2022. [PMID: 35439801 DOI: 10.1039/d2tb00337f] [Reference Citation Analysis]
18 Zhang T, Gan Z, Zhen S, Hu Y, Hu X. Monitoring of glutathione using ratiometric fluorescent sensor based on MnO2 nanosheets simultaneously tuning the fluorescence of Rhodamine 6G and thiamine hydrochloride. Spectrochim Acta A Mol Biomol Spectrosc 2022;271:120942. [PMID: 35114634 DOI: 10.1016/j.saa.2022.120942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022;2:20210238. [DOI: 10.1002/exp.20210238] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
20 Zhang K, Ma Z, Li S, Wu Y, Zhang J, Zhang W, Zhao Y, Han H. Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials 2022;284:121502. [PMID: 35390708 DOI: 10.1016/j.biomaterials.2022.121502] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Tang M, Liu Y, Xu X, Zhang Y, Liu Y. Dual-responsive drug release and fluorescence imaging based on disulfide-pillar[4]arene aggregate in cancer cells. Bioorganic & Medicinal Chemistry 2022;57:116649. [DOI: 10.1016/j.bmc.2022.116649] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
22 Zhang R, Ma Q, Hu G, Wang L. Acid-Triggered H2O2 Self-Supplying Nanoplatform for 19F-MRI with Enhanced Chemo-Chemodynamic Therapy. Anal Chem 2022;94:3727-34. [PMID: 35184546 DOI: 10.1021/acs.analchem.2c00023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Liu Y, Chi S, Cao Y, Liu Z. Glutathione-Responsive Biodegradable Core–Shell Nanoparticles That Self-Generate H 2 O 2 and Deliver Doxorubicin for Chemo–Chemodynamic Therapy. ACS Appl Nano Mater 2022;5:2592-602. [DOI: 10.1021/acsanm.1c04277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Hao Y, Gao Y, Fan Y, Zhang C, Zhan M, Cao X, Shi X, Guo R. A tumor microenvironment-responsive poly(amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01247-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
25 Li C, Hao D, Wang X, Sun T, Xie Z. Copper depletion combined with photothermal therapy suppresses breast cancer. Mater Chem Front . [DOI: 10.1039/d2qm00445c] [Reference Citation Analysis]
26 Zhang L, Li CX, Wan SS, Zhang XZ. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022;11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
27 Zhao DH, Li CQ, Hou XL, Xie XT, Zhang B, Wu GY, Jin F, Zhao YD, Liu B. Tumor Microenvironment-Activated Theranostics Nanozymes for Fluorescence Imaging and Enhanced Chemo-Chemodynamic Therapy of Tumors. ACS Appl Mater Interfaces 2021;13:55780-9. [PMID: 34787410 DOI: 10.1021/acsami.1c12611] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
28 Sun Y, Wang Y, Liu Y, Weng B, Yang H, Xiang Z, Ran J, Wang H, Yang C. Intelligent Tumor Microenvironment-Activated Multifunctional Nanoplatform Coupled with Turn-on and Always-on Fluorescence Probes for Imaging-Guided Cancer Treatment. ACS Appl Mater Interfaces 2021;13:53646-58. [PMID: 34748304 DOI: 10.1021/acsami.1c17642] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Cui R, Shi J, Liu Z. Metal-organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with targeted H2O2 self-supply. Dalton Trans 2021;50:15870-7. [PMID: 34709256 DOI: 10.1039/d1dt03110d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021;:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 17.5] [Reference Citation Analysis]
31 Zhou H, Qi Z, Pei P, Shen W, Zhang Y, Yang K, Sun L, Liu T. Biocompatible nanomicelles for sensitive detection and photodynamic therapy of early-stage cancer. Biomater Sci 2021;9:6227-35. [PMID: 34365494 DOI: 10.1039/d1bm00847a] [Reference Citation Analysis]