BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Silva CA, lv J, Yin L, Jeerapan I, Innocenzi G, Soto F, Ha Y, Wang J. Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices. Adv Funct Mater 2020;30:2002041. [DOI: 10.1002/adfm.202002041] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Banerjee PS, Rana DK, Banerjee SS. Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials. Adv Colloid Interface Sci 2022;308:102752. [PMID: 36007286 DOI: 10.1016/j.cis.2022.102752] [Reference Citation Analysis]
2 Sun T, Wang L, Jiang W. Pushing thermoelectric generators toward energy harvesting from the human body: Challenges and strategies. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.06.001] [Reference Citation Analysis]
3 Cho H, Lee B, Jang D, Yoon J, Chung S, Hong Y. Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Mater Horiz 2022. [PMID: 35703019 DOI: 10.1039/d2mh00470d] [Reference Citation Analysis]
4 Yang JC, Lee S, Ma BS, Kim J, Song M, Kim SY, Kim DW, Kim TS, Park S. Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Sci Adv 2022;8:eabn3863. [PMID: 35648853 DOI: 10.1126/sciadv.abn3863] [Reference Citation Analysis]
5 Gao Z, Wang C, Gao N, Guo S, Chen Y, Chai Z, Wang Y, Ma H. Electrodeposited Ni-W coatings as the effective reaction barrier at Ga-21.5In-10Sn/Cu interfaces. Surfaces and Interfaces 2022;30:101838. [DOI: 10.1016/j.surfin.2022.101838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Li K, Shuai Y, Cheng X, Luan H, Liu S, Yang C, Xue Z, Huang Y, Zhang Y. Island Effect in Stretchable Inorganic Electronics. Small. [DOI: 10.1002/smll.202107879] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhang J, Li J, Cheng W, Zhang J, Zhou Z, Sun X, Li L, Liang J, Shi Y, Pan L. Challenges in Materials and Devices of Electronic Skin. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.1c00799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Song X, Zhang T, Wu L, Hu R, Qian W, Liu Z, Wang J, Shi Y, Xu J, Chen K, Yu L. Highly Stretchable High-Performance Silicon Nanowire Field Effect Transistors Integrated on Elastomer Substrates. Adv Sci (Weinh) 2022;9:e2105623. [PMID: 35092351 DOI: 10.1002/advs.202105623] [Reference Citation Analysis]
9 Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv Sci (Weinh) 2022;9:e2104426. [PMID: 35023321 DOI: 10.1002/advs.202104426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
10 Xing Z, Fu J, Chen S, Gao J, Zhao R, Liu J. Perspective on gallium-based room temperature liquid metal batteries. Front Energy. [DOI: 10.1007/s11708-022-0815-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Baharfar M, Kalantar-Zadeh K. Emerging Role of Liquid Metals in Sensing. ACS Sens 2022;7:386-408. [PMID: 35119830 DOI: 10.1021/acssensors.1c02606] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
12 Okutani C, Yokota T, Miyazako H, Someya T. 3D Printed Spring‐Type Electronics with Liquid Metals for Highly Stretchable Conductors and Inductive Strain/Pressure Sensors. Adv Materials Technologies. [DOI: 10.1002/admt.202101657] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Gao W, Xu Z, Han X, Pan C. Recent advances in curved image sensor arrays for bioinspired vision system. Nano Today 2022;42:101366. [DOI: 10.1016/j.nantod.2021.101366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
14 Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. Journal of Polymer Science. [DOI: 10.1002/pol.20210867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhang Y, Wen D, Liu M, Li Y, Lin Y, Cao K, Yang F, Chen R. Stretchable PDMS Encapsulation via SiO 2 Doping and Atomic Layer Infiltration for Flexible Displays. Adv Materials Inter 2022;9:2101857. [DOI: 10.1002/admi.202101857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
16 Jung S, Kim J, Kang S. Distribution Density-Aware Compensation for High-Resolution Stretchable Display. IEEE Access 2022;10:72470-9. [DOI: 10.1109/access.2022.3189478] [Reference Citation Analysis]
17 Wang Y, Guo J, Xiao W, Sun K, Wang H, Hu L. Recent Development of Liquid Metal‐Based Functional Materials Combined with Common Transition Metals. Adv Materials Inter 2021;8:2100884. [DOI: 10.1002/admi.202100884] [Reference Citation Analysis]
18 Uppal A, Kong W, Rana A, Wang RY, Rykaczewski K. Enhancing Thermal Transport in Silicone Composites via Bridging Liquid Metal Fillers with Reactive Metal Co-Fillers and Matrix Viscosity Tuning. ACS Appl Mater Interfaces 2021;13:43348-55. [PMID: 34491735 DOI: 10.1021/acsami.1c11275] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Fu H, Liu G, Xiong L, Wang M, Lee J, Ren R, Yang W, Lee JK. A Shape‐Variable, Low‐Temperature Liquid Metal–Conductive Polymer Aqueous Secondary Battery. Adv Funct Mater 2021;31:2107062. [DOI: 10.1002/adfm.202107062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Wang X, Zhu Y, Liu Z, Yuan Y, Qiu L. Ultrathin Polythiophene Films Prepared by Vertical Phase Separation for Highly Stretchable Organic Field‐Effect Transistors. Adv Electron Mater 2021;7:2100591. [DOI: 10.1002/aelm.202100591] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Parrilla M, De Wael K. Wearable Self‐Powered Electrochemical Devices for Continuous Health Management. Adv Funct Mater 2021;31:2107042. [DOI: 10.1002/adfm.202107042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
22 Zhang F, Ren D, Huang L, Zhang Y, Sun Y, Liu D, Zhang Q, Feng W, Zheng Q. 3D Interconnected Conductive Graphite Nanoplatelet Welded Carbon Nanotube Networks for Stretchable Conductors. Adv Funct Mater 2021;31:2107082. [DOI: 10.1002/adfm.202107082] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
23 Wu H, Zhang Y, Kjøniksen A, Zhou X, Zhou X. Wearable Biofuel Cells: Advances from Fabrication to Application. Adv Funct Materials 2021;31:2103976. [DOI: 10.1002/adfm.202103976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
24 Feng B, Jiang X, Zou G, Wang W, Sun T, Yang H, Zhao G, Dong M, Xiao Y, Zhu H, Liu L. Nacre‐Inspired, Liquid Metal‐Based Ultrasensitive Electronic Skin by Spatially Regulated Cracking Strategy. Adv Funct Mater 2021;31:2102359. [DOI: 10.1002/adfm.202102359] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
25 Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch-Based Stressless Cortisol Sensing. Adv Mater 2021;33:e2008465. [PMID: 33786887 DOI: 10.1002/adma.202008465] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 32.0] [Reference Citation Analysis]
26 Park HJ, Jeong J, Son SG, Kim SJ, Lee M, Kim HJ, Jeong J, Hwang SY, Park J, Eom Y, Choi BG. Fluid‐Dynamics‐Processed Highly Stretchable, Conductive, and Printable Graphene Inks for Real‐Time Monitoring Sweat during Stretching Exercise. Adv Funct Mater 2021;31:2011059. [DOI: 10.1002/adfm.202011059] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
27 Mousavi M, Ghasemian MB, Han J, Wang Y, Abbasi R, Yang J, Tang J, Idrus-saidi SA, Guan X, Christoe MJ, Merhebi S, Zhang C, Tang J, Jalili R, Daeneke T, Wu T, Kalantar-zadeh K, Mayyas M. Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing. Applied Materials Today 2021;22:100954. [DOI: 10.1016/j.apmt.2021.100954] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
28 Xu K, Lu Y, Takei K. Flexible Hybrid Sensor Systems with Feedback Functions. Adv Funct Mater 2021;31:2007436. [DOI: 10.1002/adfm.202007436] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
29 Wang X, Guo J, Hu L. Preparation and application of gallium-based conductive materials in the very recent years. Sci China Technol Sci 2021;64:681-95. [DOI: 10.1007/s11431-020-1733-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosensors and Bioelectronics 2020;168:112569. [DOI: 10.1016/j.bios.2020.112569] [Cited by in Crossref: 52] [Cited by in F6Publishing: 93] [Article Influence: 26.0] [Reference Citation Analysis]
31 Yin L, Lv J, Wang J. Structural Innovations in Printed, Flexible, and Stretchable Electronics. Adv Mater Technol 2020;5:2000694. [DOI: 10.1002/admt.202000694] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
32 Wang Y, Wang S, Chang H, Rao W. Galvanic Replacement of Liquid Metal/Reduced Graphene Oxide Frameworks. Adv Mater Interfaces 2020;7:2000626. [DOI: 10.1002/admi.202000626] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]