BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cook AB, Perrier S. Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Adv Funct Mater 2019;30:1901001. [DOI: 10.1002/adfm.201901001] [Cited by in Crossref: 69] [Cited by in F6Publishing: 49] [Article Influence: 23.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao Y, Ma M, Lin X, Chen M. Photoorganocatalyzed Divergent Reversible‐Deactivation Radical Polymerization towards Linear and Branched Fluoropolymers. Angew Chem Int Ed 2020;59:21470-4. [DOI: 10.1002/anie.202009475] [Cited by in Crossref: 21] [Article Influence: 10.5] [Reference Citation Analysis]
2 Zhang Y, Olofsson K, Fan Y, Sánchez CC, Andrén OCJ, Qin L, Fortuin L, Jonsson EM, Malkoch M. Novel Therapeutic Platform of Micelles and Nanogels from Dopa-Functionalized Triblock Copolymers. Small 2021;17:e2007305. [PMID: 33724720 DOI: 10.1002/smll.202007305] [Reference Citation Analysis]
3 Zou M, Zhao P, Huo S, Göstl R, Herrmann A. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Lett 2022;11:15-9. [PMID: 35574800 DOI: 10.1021/acsmacrolett.1c00645] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Long L, Cheng L, Hou J, Wang L, Wang X, He L, Li S, Zhao J, Hou X, Kang C, Yuan X. The effect of umbrella-type branching on the blood circulation and tumor targeting of star-branched PLA-PMPC copolymer micelles. Sci China Technol Sci 2021;64:71-82. [DOI: 10.1007/s11431-020-1645-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Reference Citation Analysis]
6 Ge P, Niu B, Wu Y, Xu W, Li M, Sun H, Zhou H, Zhang X, Xie J. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chemical Engineering Journal 2020;383:123228. [DOI: 10.1016/j.cej.2019.123228] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
7 Ahmadi Y, Kim KH. Hyperbranched polymers as superior adsorbent for the treatment of dyes in water. Adv Colloid Interface Sci 2022;302:102633. [PMID: 35259566 DOI: 10.1016/j.cis.2022.102633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wang C, Xue Y, Tian H, Zhao Z, Shen S, Fang L, Cui R, Han J, Zhu B. Tri‐functional unit groups contained polyurethane composites with excellent antibacterial property and biocompatibility. Journal of Polymer Science. [DOI: 10.1002/pol.20210951] [Reference Citation Analysis]
9 Song T, Gao Y, Song M, Qian J, Zhang H, Zhou J, Ding Y. Fluoropolymers-mediated efficient biomacromolecule drug delivery. Medicine in Drug Discovery 2022. [DOI: 10.1016/j.medidd.2022.100123] [Reference Citation Analysis]
10 Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021;171:139-63. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 23.0] [Reference Citation Analysis]
11 Alazzo A, Gumus N, Gurnani P, Stolnik S, Rahman R, Spriggs K, Alexander C. Investigating histidinylated highly branched poly(lysine) for siRNA delivery. J Mater Chem B 2021. [PMID: 34852030 DOI: 10.1039/d1tb01793d] [Reference Citation Analysis]
12 Xiang B, Xue Y, Liu Z, Tian J, Frey H, Gao Y, Zhang W. Water-soluble hyperbranched polyglycerol photosensitizer for enhanced photodynamic therapy. Polym Chem 2020;11:3913-21. [DOI: 10.1039/d0py00431f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhao Y, Ma M, Lin X, Chen M. Photoorganocatalyzed Divergent Reversible‐Deactivation Radical Polymerization towards Linear and Branched Fluoropolymers. Angew Chem 2020;132:21654-8. [DOI: 10.1002/ange.202009475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Balafouti A, Pispas S. P( OEGMA‐co‐LMA ) hyperbranched amphiphilic copolymers as self‐assembled nanocarriers. Journal of Polymer Science. [DOI: 10.1002/pol.20220078] [Reference Citation Analysis]
16 Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. Advanced NanoBiomed Research 2022;2:2100087. [DOI: 10.1002/anbr.202100087] [Reference Citation Analysis]
17 Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.1c03245] [Reference Citation Analysis]
19 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Reference Citation Analysis]
21 Zhao C, Cai L, Chen H, Tan H, Yan D. Oral biomaterials for intestinal regulation. Engineered Regeneration 2021;2:116-32. [DOI: 10.1016/j.engreg.2021.09.002] [Reference Citation Analysis]
22 Reith MA, De Franceschi I, Soete M, Badi N, Aksakal R, Du Prez FE. Sequence-Defined Mikto-Arm Star-Shaped Macromolecules. J Am Chem Soc . [DOI: 10.1021/jacs.2c00145] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Duan Z, Luo Q, Dai X, Li X, Gu L, Zhu H, Tian X, Zhang H, Gong Q, Gu Z, Luo K. Synergistic Therapy of a Naturally Inspired Glycopolymer-Based Biomimetic Nanomedicine Harnessing Tumor Genomic Instability. Adv Mater 2021;33:e2104594. [PMID: 34554623 DOI: 10.1002/adma.202104594] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
24 Raj W, Jerczynski K, Rahimi M, Pavlova E, Šlouf M, Przekora A, Pietrasik J. Stimuli-responsive vitamin E-based micelles: Effective drug carriers with a controlled anticancer drug release. Polymer 2022;253:125001. [DOI: 10.1016/j.polymer.2022.125001] [Reference Citation Analysis]
25 Pacini A, Nitti A, Sangiovanni G, Vitale M, Pasini D. Clickable 2,2‐bis(hydroxymethyl)propionic acid‐derived AB 2 monomers: Hyperbranched polyesters through the CuAAC cycloaddition (click) reaction. Journal of Polymer Science 2021;59:2014-22. [DOI: 10.1002/pol.20210340] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Cai H, Tan P, Chen X, Kopytynski M, Pan D, Zheng X, Gu L, Gong Q, Tian X, Gu Z, Zhang H, Chen R, Luo K. Stimuli-Sensitive Linear-Dendritic Block Copolymer-Drug Prodrug as a Nanoplatform for Tumor Combination Therapy. Adv Mater 2022;34:e2108049. [PMID: 34875724 DOI: 10.1002/adma.202108049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
27 Yan L, Dang X, Yang M, Zhang M, Rui L, Han W, Li Y. One-pot synthesis of PAMAM-grafted hyperbranched cellulose towards enhanced thermal stability and antibacterial activity. Process Biochemistry 2022;121:78-86. [DOI: 10.1016/j.procbio.2022.06.032] [Reference Citation Analysis]
28 Kishimoto A, Mizuguchi M, Ryoki A, Terao K. Molecular structure and chiral recognition ability of highly branched cyclic dextrin carbamate derivative. Carbohydrate Polymers 2022;290:119491. [DOI: 10.1016/j.carbpol.2022.119491] [Reference Citation Analysis]
29 Wu D, Wu J, Tao P, Yao Y, Wang J, Liu D, Chen F, Xu B, Li W, Zhang A. Thermoresponsive cationic dendronized copolymers and their corresponding nanogels as smart gene carriers. Polym Chem 2020;11:4105-14. [DOI: 10.1039/d0py00631a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
30 Liu K, Xiang J, Wang G, Xu H, Piao Y, Liu X, Tang J, Shen Y, Zhou Z. Linear-Dendritic Polymer-Platinum Complexes Forming Well-Defined Nanocapsules for Acid-Responsive Drug Delivery. ACS Appl Mater Interfaces 2021;13:44028-40. [PMID: 34499483 DOI: 10.1021/acsami.1c12156] [Reference Citation Analysis]
31 Zhang Y, Wang L, Wang J, Xin S, Sheng X. Enzyme-responsive polysaccharide supramolecular nanoassembly for enhanced DNA encapsulation and controlled release. Chinese Chemical Letters 2021;32:1902-6. [DOI: 10.1016/j.cclet.2021.01.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Amgoth C, Dharmapuri G, Patra S, Wasnik K, Gupta P, Kalle AM, Paik P. 'Plate‐like‐coral' polymer particles with dendritic structure and porous channels: Effective delivery of anti‐cancer drugs. J Appl Polym Sci 2021;138:50386. [DOI: 10.1002/app.50386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Xue Y, Qiu Z, Zhao Z, Wang C, Cui R, Shen S, Zhao Y, Zhou S, Fang L, Chen Z, Zhu H, Zhu B. Secondary Ammonium-Based Hyperbranched Poly(amidoamine) with Excellent Membrane-Active Property for Multidrug-Resistant Bacterial Infection. ACS Appl Bio Mater 2022. [PMID: 35765122 DOI: 10.1021/acsabm.2c00356] [Reference Citation Analysis]
34 Cai H, Xiang Y, Zeng Y, Li Z, Zheng X, Luo Q, Zhu H, Gong Q, Gu Z, Liu Y, Zhang H, Luo K. Cathepsin B-responsive and gadolinium-labeled branched glycopolymer-PTX conjugate-derived nanotheranostics for cancer treatment. Acta Pharm Sin B 2021;11:544-59. [PMID: 33643830 DOI: 10.1016/j.apsb.2020.07.023] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 48.0] [Reference Citation Analysis]
35 Chen W, Liu P. PEGylated dendritic polyurethane as unimolecular micelles for tumor chemotherapy: Effect of molecular architecture. Int J Pharm 2022;:121533. [PMID: 35121047 DOI: 10.1016/j.ijpharm.2022.121533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Liu X, Xiao M, Xue K, Li M, Liu D, Wang Y, Yang X, Hu Y, Kwok RTK, Qin A, Zhu C, Lam JWY, Tang BZ. Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angew Chem Int Ed 2021;60:19222-31. [DOI: 10.1002/anie.202104709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Zhang Y, Uthaman S, Song W, Eom KH, Jeon SH, Huh KM, Babu A, Park I, Kim I. Multistimuli-Responsive Polymeric Vesicles for Accelerated Drug Release in Chemo-photothermal Therapy. ACS Biomater Sci Eng 2020;6:5012-23. [DOI: 10.1021/acsbiomaterials.0c00585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
38 Cai H, Dai X, Wang X, Tan P, Gu L, Luo Q, Zheng X, Li Z, Zhu H, Zhang H, Gu Z, Gong Q, Luo K. A Nanostrategy for Efficient Imaging-Guided Antitumor Therapy through a Stimuli-Responsive Branched Polymeric Prodrug. Adv Sci (Weinh) 2020;7:1903243. [PMID: 32195104 DOI: 10.1002/advs.201903243] [Cited by in Crossref: 107] [Cited by in F6Publishing: 98] [Article Influence: 53.5] [Reference Citation Analysis]
39 Xu G, Zhang J, Jia R, Li W, Zhang A. Topological Effects of Dendronized Polymers on Their Thermoresponsiveness and Microconfinement. Macromolecules. [DOI: 10.1021/acs.macromol.1c02066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Pearce AK, Anane-Adjei AB, Cavanagh RJ, Monteiro PF, Bennett TM, Taresco V, Clarke PA, Ritchie AA, Alexander MR, Grabowska AM, Alexander C. Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Adv Healthc Mater 2020;9:e2000892. [PMID: 33073536 DOI: 10.1002/adhm.202000892] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
41 Floyd TG, Häkkinen S, Hartlieb M, Kerr A, Perrier S. Complex Polymeric Architectures Synthesized through RAFT Polymerization. In: Moad G, Rizzardo E, editors. RAFT Polymerization. Wiley; 2021. pp. 933-81. [DOI: 10.1002/9783527821358.ch20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Sadtler K, Collins J, Byrne JD, Langer R. Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Adv Drug Deliv Rev 2020;156:65-79. [PMID: 32589903 DOI: 10.1016/j.addr.2020.06.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
43 Floyd TG, Song JI, Hapeshi A, Laroque S, Hartlieb M, Perrier S. Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency. J Mater Chem B 2022;10:3696-704. [PMID: 35441653 DOI: 10.1039/d2tb00490a] [Reference Citation Analysis]
44 Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Dubey SK, Kali M, Hejmady S, Saha RN, Alexander A, Kesharwani P. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. European Journal of Pharmaceutical Sciences 2021;164:105890. [DOI: 10.1016/j.ejps.2021.105890] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
46 Song J, Ju Y, Amarasena TH, Lin Z, Mettu S, Zhou J, Rahim MA, Ang CS, Cortez-Jugo C, Kent SJ, Caruso F. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood. ACS Nano 2021;15:10025-38. [PMID: 34009935 DOI: 10.1021/acsnano.1c01642] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
47 Han L, Li L, Gao R, Liu X, Kan C. Functional core/shell PMMA /P( MMA‐ co ‐PDSECAE )‐ SH particles with thiol groups in the shell and their adsorption of heavy metal ions. J of Applied Polymer Sci. [DOI: 10.1002/app.52859] [Reference Citation Analysis]
48 Cook AB, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021;15:2068-98. [PMID: 33555171 DOI: 10.1021/acsnano.0c09115] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 33.0] [Reference Citation Analysis]
49 Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. Adv Sci (Weinh) 2021;8:2003937. [PMID: 34026447 DOI: 10.1002/advs.202003937] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 19.0] [Reference Citation Analysis]
50 Bexis P, Arno MC, Bell CA, Thomas AW, Dove AP. Thermally-induced hyperbranching of bromine-containing polyesters by insertion of in situ generated chain-end carbenes. Chem Commun (Camb) 2021;57:4275-8. [PMID: 33913987 DOI: 10.1039/d1cc00821h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Cao Y, Zhang J, Wang L, Cen M, Peng W, Li Y, Zhang F, Tan J, Fan X. Dual-Functionalized Covalent Triazine Framework Nanosheets as Hierarchical Nonviral Vectors for Intracellular Gene Delivery. ACS Appl Nano Mater 2021;4:4948-55. [DOI: 10.1021/acsanm.1c00477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
52 Flynn J, Ryan A, Hudson SP. Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. Eur J Pharm Biopharm 2021;165:149-63. [PMID: 34020021 DOI: 10.1016/j.ejpb.2021.05.015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Kavand A, Anton N, Vandamme T, Serra CA, Chan-seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release 2020;321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
54 Liu S, Yan J, Zhang Q, Yan Y. Acyclic Diene Metathesis (ADMET) as Powerful Tool for Functional Polymers with Versatile Architectures. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02386-x] [Reference Citation Analysis]
55 Luo L, Yin Z, Qi Y, Liu S, Yi Y, Tian X, Wu Y, Zhong D, Gu Z, Zhang H, Luo K. An intracellular enzyme-responsive polymeric prodrug with synergistic effect of chemotherapy and two-photon photodynamic therapy. Applied Materials Today 2021;23:100996. [DOI: 10.1016/j.apmt.2021.100996] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
56 Peng B, Yang Z, Yang L, Chen J, Liu L, Wang D. Reducing the Solvent Quality Gives Rise to the Outward Migration of a Star Polymer in Poiseuille Flow. Macromolecules. [DOI: 10.1021/acs.macromol.2c00031] [Reference Citation Analysis]
57 Messmer D, Sánchez-Ferrer A, Tacke S, Yu H, Nüsse H, Klingauf J, Wepf R, Kröger M, Halperin A, Mezzenga R, Schlüter AD. Can one determine the density of an individual synthetic macromolecule? Soft Matter 2019;15:6547-56. [PMID: 31359025 DOI: 10.1039/c9sm01220f] [Reference Citation Analysis]