BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kong T, Luo G, Zhao Y, Liu Z. Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications. Adv Funct Mater 2019;29:1808012. [DOI: 10.1002/adfm.201808012] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 25.7] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Guo Z, Li Y, Qing Y, Dansawad P, Wu H, Liang J, Li W. Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil-water emulsions coalescence separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;650:129646. [DOI: 10.1016/j.colsurfa.2022.129646] [Reference Citation Analysis]
2 Sharma V, Parihar VS, Ali-löytty H, Vihinen J, Ukale D, Yiannacou K, Lahtonen K, Kellomäki M, Sariola V. Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02959] [Reference Citation Analysis]
3 Yin Z, Cheng Y, Deng Y, Li Z, Liu K, Li M, Chen X, Xue M, Ou J, Lei S, Luo Y, Xie C, Hong Z. Functional and versatile colorful superhydrophobic nanocellulose-based membrane with high durability, high-efficiency oil/water separation and oil spill cleanup. Surface and Coatings Technology 2022;445:128714. [DOI: 10.1016/j.surfcoat.2022.128714] [Reference Citation Analysis]
4 Lee SH, Kang M, Jang H, Kondaveeti S, Sun K, Kim S, Park HH, Jeong HE. Bifunctional Amphiphilic Nanospikes with Antifogging and Antibiofouling Properties. ACS Appl Mater Interfaces 2022. [PMID: 35959590 DOI: 10.1021/acsami.2c08266] [Reference Citation Analysis]
5 Zhang J, Li L, Xu P, Lei Y, Song Q, Liu J, Xiong Y, Yang S, Zhang Y, Xue L. Anisotropic Wettability of Bioinspired Surface Characterized by Friction Force. Biomimetics 2022;7:108. [DOI: 10.3390/biomimetics7030108] [Reference Citation Analysis]
6 Wang Y, Sun Y, Xue Y, Sui X, Wang F, Liang W, Dong Q. Multifunctional Electro-thermal Superhydrophobic Shape Memory Film with In Situ Reversible Wettability and Anti-icing/Deicing Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.129960] [Reference Citation Analysis]
7 Zhang Y, Xing Q, Chen A, Li M, Qin G, Zhang J, Lei C. Turning Hierarchically Micro-/Nanostructured Polypropylene Surfaces Robustly Superhydrophobic via Tailoring Contact Line Density of Mushroom-Shaped Nanostructure. Chemical Engineering Science 2022. [DOI: 10.1016/j.ces.2022.118027] [Reference Citation Analysis]
8 Xu P, Zhang Y, Li L, Lin Z, Zhu B, Chen W, Li G, Liu H, Xiao K, Xiong Y, Yang S, Lei Y, Xue L. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. Bioinspir Biomim 2022;17. [PMID: 35561670 DOI: 10.1088/1748-3190/ac6fa5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang H, Zhang H, Wang H, Zhao Y, Chai R. Natural proteins-derived asymmetric porous conduit for peripheral nerve regeneration. Applied Materials Today 2022;27:101431. [DOI: 10.1016/j.apmt.2022.101431] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhan Y, Cheng Q, Song Y, Li M. Micro‐Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Adv Funct Materials 2022;32:2200385. [DOI: 10.1002/adfm.202200385] [Reference Citation Analysis]
11 Li Z, Hu R, Ye S, Song J, Liu L, Qu J, Song W, Cao C. High-Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry 2022;28:e202104588. [PMID: 35253287 DOI: 10.1002/chem.202104588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wang L, Huang S, Li Q, Ma L, Zhang C, Liu F, Jiang M, Yu X, Xu L. Bioinspired three-dimensional hierarchical micro/nano-structured microdevice for enhanced capture and effective release of circulating tumor cells. Chemical Engineering Journal 2022;435:134762. [DOI: 10.1016/j.cej.2022.134762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhang X, Wang Q, Zou R, Song B, Yan C, Shi Y, Su B. 3D-Printed Superhydrophobic and Magnetic Device That Can Self-Powered Sense A Tiny Droplet Impact. Engineering 2022. [DOI: 10.1016/j.eng.2022.04.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin‐Interfaced Sensors and Devices. Adv Funct Materials. [DOI: 10.1002/adfm.202200260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
15 Foday EH Jr, Bai B. Mangifera indica Leaf (MIL) as a Novel Material in Atmospheric Water Collection. ACS Omega 2022;7:11809-17. [PMID: 35449905 DOI: 10.1021/acsomega.1c07133] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang Y, Sun G, He Y, Zhou K, Zhu L. Octopus-inspired sucker to absorb soft tissues: stiffness gradient and acetabular protuberance improve the adsorption effect. Bioinspir Biomim 2022;17. [PMID: 35235920 DOI: 10.1088/1748-3190/ac59c6] [Reference Citation Analysis]
17 Liu C, Peng Y, Huang C, Ning Y, Shang J, Li Y. Bioinspired Superhydrophobic/Superhydrophilic Janus Copper Foam for On-Demand Oil/Water Separation. ACS Appl Mater Interfaces 2022;14:11981-8. [PMID: 35220721 DOI: 10.1021/acsami.2c00585] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
18 Yu S, Guo Y, Li H, Lu C, Zhou H, Li L. Tailoring Ordered Wrinkle Arrays for Tunable Surface Performances by Template-Modulated Gradient Films. ACS Appl Mater Interfaces 2022. [PMID: 35192316 DOI: 10.1021/acsami.2c00926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Cao W, Ma W, Lu T, Jiang Z, Xiong R, Huang C. Multifunctional nanofibrous membranes with sunlight-driven self-cleaning performance for complex oily wastewater remediation. J Colloid Interface Sci 2022;608:164-74. [PMID: 34626964 DOI: 10.1016/j.jcis.2021.09.194] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 22.0] [Reference Citation Analysis]
20 Muehlberger M. Nanoimprinting of Biomimetic Nanostructures. Nanomanufacturing 2022;2:17-40. [DOI: 10.3390/nanomanufacturing2010002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Yang Y, Guo Z, Li Y, Qing Y, Wang W, Ma Z, You S, Li W. Multifunctional superhydrophobic self-cleaning cotton fabrics with oil-water separation and dye degradation via thiol-ene click reaction. Separation and Purification Technology 2022;282:120123. [DOI: 10.1016/j.seppur.2021.120123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Wang F, Sun Y, Zong G, Liang W, Yang B, Guo F, Yangou C, Wang Y, Zhang Z. Electrothermally Assisted Surface Charge Density Gradient Printing to Drive Droplet Transport. ACS Appl Mater Interfaces 2022;14:3526-35. [PMID: 34990109 DOI: 10.1021/acsami.1c21452] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Li K, Xu J, Li P, Fan Y. A review of magnetic ordered materials in biomedical field: Constructions, applications and prospects. Composites Part B: Engineering 2022;228:109401. [DOI: 10.1016/j.compositesb.2021.109401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
24 Yang W, qin Y, Wang Z, Yu T, Chen Y, Ge Z. Recent advance in cell patterning techniques: Approaches, applications and future prospects. Sensors and Actuators A: Physical 2022;333:113229. [DOI: 10.1016/j.sna.2021.113229] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Mei J, Liao T, Peng H, Sun Z. Bioinspired Materials for Energy Storage. Small Methods 2021;:e2101076. [PMID: 34954906 DOI: 10.1002/smtd.202101076] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
26 Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
27 Han X, Wang M, Yan R, Wang H. Cassie State Stability and Gas Restoration Capability of Superhydrophobic Surfaces with Truncated Cone-Shaped Pillars. Langmuir 2021;37:12897-906. [PMID: 34714661 DOI: 10.1021/acs.langmuir.1c01909] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Xu T, Zhang J, Guo H, Zhao W, Li Q, Zhu Y, Yang J, Bai J, Zhang L. Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment. ACS Appl Mater Interfaces 2021;13:49254-65. [PMID: 34633173 DOI: 10.1021/acsami.1c11316] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Fradin C, Guittard F, Darmanin T. Designing Tunable Omniphobic Surfaces by Controlling the Electropolymerization Sites of Carbazole‐Based Monomers. Macromol Chem Phys 2021;222:2100262. [DOI: 10.1002/macp.202100262] [Reference Citation Analysis]
30 Sun L, Guo J, Chen H, Zhang D, Shang L, Zhang B, Zhao Y. Tailoring Materials with Specific Wettability in Biomedical Engineering. Adv Sci (Weinh) 2021;8:e2100126. [PMID: 34369090 DOI: 10.1002/advs.202100126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
31 Wang F, Sun Y, Liang W, He H, Yang B, Bonsu AO. The three-line synergistic icephobicity of conductive CNTs/PDMS nanocomposite with bio-inspired hierarchical surface. Surfaces and Interfaces 2021;26:101424. [DOI: 10.1016/j.surfin.2021.101424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Dayan CB, Chun S, Krishna-Subbaiah N, Drotlef DM, Akolpoglu MB, Sitti M. 3D Printing of Elastomeric Bioinspired Complex Adhesive Microstructures. Adv Mater 2021;33:e2103826. [PMID: 34396591 DOI: 10.1002/adma.202103826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Wang Y, Yu X, Cheng Z, Zhi C, Liu Y, Liu Y. Switchable shape memory wetting surface based on synergistic regulation of surface chemistry and microstructure. Composites Part A: Applied Science and Manufacturing 2021;149:106579. [DOI: 10.1016/j.compositesa.2021.106579] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Sun Y, Wang Y, Sui X, Liang W, He L, Wang F, Yang B. Biomimetic Multiwalled Carbon Nanotube/Polydimethylsiloxane Nanocomposites with Temperature-Controlled, Hydrophobic, and Icephobic Properties. ACS Appl Nano Mater 2021;4:10852-63. [DOI: 10.1021/acsanm.1c02275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Stoddard R, Nithyanandam K, Pitchumani R. Fabrication and durability characterization of superhydrophobic and lubricant-infused surfaces. J Colloid Interface Sci 2021;608:662-72. [PMID: 34628325 DOI: 10.1016/j.jcis.2021.09.099] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Yang T, Yang S, Ahmed T, Nguyen K, Yu J, Cao X, Zan R, Zhang X, Shen H, Fay ME, Williams EK, Lam WA, VanEpps JS, Takayama S, Song Y. Dosage-dependent antimicrobial activity of DNA-histone microwebs against Staphylococcus aureus. Adv Mater Interfaces 2021;8:2100717. [PMID: 34540532 DOI: 10.1002/admi.202100717] [Reference Citation Analysis]
37 Zhao X, Ou G, Lei M, Zhang Y, Li L, Ge A, Wang Y, Li Y, Liu BF. Rapid generation of hybrid biochemical/mechanical cues in heterogeneous droplets for high-throughput screening of cellular responses. Lab Chip 2021;21:2691-701. [PMID: 34165109 DOI: 10.1039/d1lc00209k] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
38 Jo W, Kang HS, Choi J, Jung J, Hyun J, Kwon J, Kim I, Lee H, Kim HT. Light-Designed Shark Skin-Mimetic Surfaces. Nano Lett 2021;21:5500-7. [PMID: 33913722 DOI: 10.1021/acs.nanolett.1c00436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Ren J, Tao F, Lu X, Zhang H, Gai L, Liu L, Jiang H. Biomass-based superhydrophobic coating with tunable colors and excellent robustness. Carbohydr Polym 2021;270:118401. [PMID: 34364634 DOI: 10.1016/j.carbpol.2021.118401] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
40 Kim DH, Kim S, Park SR, Fang NX, Cho YT. Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces. ACS Appl Mater Interfaces 2021;13:33618-26. [PMID: 34196537 DOI: 10.1021/acsami.1c06286] [Reference Citation Analysis]
41 Chiera S, Bittner C, Vogel N. Substrate‐Independent Design of Liquid‐Infused Slippery Surfaces via Mussel‐Inspired Chemistry. Adv Mater Interfaces 2021;8:2100156. [DOI: 10.1002/admi.202100156] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Li S, Liu J, Liu Y, Zhan B, Han Z, Ren L. pH-responsive smart superwetting Fe foam for efficient in situ on-demand oil/water separation. J Mater Sci 2021;56:13372-85. [DOI: 10.1007/s10853-021-06118-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Wu Y, Wang S, Ju S, Zhou Z, Wang T, Hang T, Li M. Thermal Oxidation Fabricated Copper Oxide Nanotip Arrays with Tunable Wettability and Robust Stability: Implications for Microfluidic Devices and Oil/Water Separation. ACS Appl Nano Mater 2021;4:4713-20. [DOI: 10.1021/acsanm.1c00316] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Qu M, Yang X, Peng L, Liu L, Yang C, Zhao Z, Liu X, Zhang T, He J. High reliable electromagnetic interference shielding carbon cloth with superamphiphobicity and environmental suitability. Carbon 2021;174:110-22. [DOI: 10.1016/j.carbon.2020.12.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
45 Sun R, Jin B, Yao L, Liu Y, Li J, Liang J, He J. Controllable Design of Bifunctional VO2 Coatings with Superhydrophobic and Thermochromic Performances. ACS Appl Mater Interfaces 2021;13:13751-9. [PMID: 33691069 DOI: 10.1021/acsami.0c21491] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
46 Hou L, Liu J, Li D, Gao Y, Wang Y, Hu R, Ren W, Xie S, Cui Z, Wang N. Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications. Chem Res Chin Univ 2021;37:337-54. [DOI: 10.1007/s40242-021-0010-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
47 Zhang X, Zhou T, Liu J, Wang R, Hu W, Liu L. Volcano-like hierarchical superhydrophobic surface synthesized via facile one-step secondary anodic oxidation. Applied Surface Science 2021;540:148337. [DOI: 10.1016/j.apsusc.2020.148337] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
48 Li Z, Hu R, Song J, Liu L, Qu J, Song W, Cao C. Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Adv Mater Interfaces 2021;8:2001636. [DOI: 10.1002/admi.202001636] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
49 Wang Y, Qi X, Zhang Z, Pang J. A facile and efficient universal strategy of superhydrophobic materials based on plant polyphenols as multifunctional platforms. Current Research in Green and Sustainable Chemistry 2021;4:100127. [DOI: 10.1016/j.crgsc.2021.100127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Qiu S, Ji J, Sun W, Pei J, He J, Li Y, Li JJ, Wang G. Recent advances in surface manipulation using micro-contact printing for biomedical applications. Smart Materials in Medicine 2021;2:65-73. [DOI: 10.1016/j.smaim.2020.12.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
51 Guo P, Wang Z, Han X, Heng L. Nepenthes pitcher inspired isotropic/anisotropic polymer solid–liquid composite interface: preparation, function, and application. Mater Chem Front 2021;5:1716-42. [DOI: 10.1039/d0qm00805b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
52 Chi J, Zhang X, Wang Y, Shao C, Shang L, Zhao Y. Bio-inspired wettability patterns for biomedical applications. Mater Horiz 2021;8:124-44. [DOI: 10.1039/d0mh01293a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
53 Jiang H, Shang T, Xian H, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W. Structures and Functional Properties of Amorphous Alloys. Small Structures 2021;2:2000057. [DOI: 10.1002/sstr.202000057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
54 Wang D, Chen D, Chen Z. Recent Progress in 3D Printing of Bioinspired Structures. Front Mater 2020;7:286. [DOI: 10.3389/fmats.2020.00286] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
55 Arunachalam S, Ahmad Z, Das R, Mishra H. Counterintuitive Wetting Transitions in Doubly Reentrant Cavities as a Function of Surface Make‐Up, Hydrostatic Pressure, and Cavity Aspect Ratio. Adv Mater Interfaces 2020;7:2001268. [DOI: 10.1002/admi.202001268] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
56 Hu Y, Ma X, Bi H, Sun J. Robust superhydrophobic surfaces fabricated by self-growth of TiO2 particles on cured silicone rubber. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;603:125227. [DOI: 10.1016/j.colsurfa.2020.125227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
57 Song Y, Jiang S, Li G, Zhang Y, Wu H, Xue C, You H, Zhang D, Cai Y, Zhu J, Zhu W, Li J, Hu Y, Wu D, Chu J. Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS Appl Mater Interfaces 2020;12:42264-73. [PMID: 32816455 DOI: 10.1021/acsami.0c10034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
58 Feng L, Sultonzoda F, Wang J, Wang H, Xue F. Superhydrophobic aluminum alloy surface with excellent universality, corrosion resistance, and antifouling performance prepared without prepolishing. Materials and Corrosion 2021;72:652-9. [DOI: 10.1002/maco.202011937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Mai VC, Lim DXA, Das P, Hou S, Lim TT, Duan H. Polydopamine‐Mediated Superlyophobic Polysiloxane Coating of Porous Substrates for Efficient Separation of Immiscible Liquids. Adv Mater Interfaces 2020;7:2000428. [DOI: 10.1002/admi.202000428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Kang H, Lai H, Cheng Z, Liu Y, Jiang L. Restoration of superwetting switching on TiO2 coated shape memory polymer arrays. Chemical Engineering Journal 2020;394:124996. [DOI: 10.1016/j.cej.2020.124996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
61 Zhu Z, Yu Z, Yun FF, Pan D, Tian Y, Jiang L, Wang X. Crystal face dependent intrinsic wettability of metal oxide surfaces. National Science Review 2021;8:nwaa166. [DOI: 10.1093/nsr/nwaa166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
62 Gao H, Liu Y, Wang G, Li S, Han Z, Ren L. Biomimetic metal surfaces inspired by lotus and reed leaves for manipulation of microdroplets or fluids. Applied Surface Science 2020;519:146052. [DOI: 10.1016/j.apsusc.2020.146052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
63 Prasannan A, Udomsin J, Tsai H, Sivakumar M, Hu C, Wang C, Hung W, Lai J. Special wettable underwater superoleophobic material for effective simultaneous removal of high viscous insoluble oils and soluble dyes from wastewater. Journal of Membrane Science 2020;603:118026. [DOI: 10.1016/j.memsci.2020.118026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
64 Fritz B, Hünig R, Guttmann M, Schneider M, Reza KS, Salomon O, Jackson P, Powalla M, Lemmer U, Gomard G. Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules. Solar Energy 2020;201:666-73. [DOI: 10.1016/j.solener.2020.03.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
65 Erbil HY. Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives. Langmuir 2020;36:2493-509. [PMID: 32049544 DOI: 10.1021/acs.langmuir.9b03908] [Cited by in Crossref: 26] [Cited by in F6Publishing: 51] [Article Influence: 13.0] [Reference Citation Analysis]
66 Yang C, Chao J, Zhang J, Zhang Z, Liu X, Tian Y, Zhang D, Chen F. Functionalized CFRP surface with water-repellence, self-cleaning and anti-icing properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;586:124278. [DOI: 10.1016/j.colsurfa.2019.124278] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
67 Si Y, Dong Z. Bioinspired Smart Liquid Directional Transport Control. Langmuir 2020;36:667-81. [DOI: 10.1021/acs.langmuir.9b03385] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
68 Manabe K, Nakano M, Hibi Y, Miyake K. Self‐Supplying Liquidity Oil‐Adsorbed Slippery Smooth Surface for Both Liquid and Solid Repellency. Adv Mater Interfaces 2020;7:1901818. [DOI: 10.1002/admi.201901818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
69 Tong W, Xiong D, Zhou H. TMES-modified SiO2 matrix non-fluorinated superhydrophobic coating for long-term corrosion resistance of aluminium alloy. Ceramics International 2020;46:1211-5. [DOI: 10.1016/j.ceramint.2019.08.251] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
70 Zhang L, He Y, Luo P, Ma L, Fan Y, Zhang S, Shi H, Li S, Nie Y. A heterostructured PPy/ZnO layer assembled on a PAN nanofibrous membrane with robust visible-light-induced self-cleaning properties for highly efficient water purification with fast separation flux. J Mater Chem A 2020;8:4483-93. [DOI: 10.1039/d0ta00207k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 10.5] [Reference Citation Analysis]
71 Yan C, Jiang P, Jia X, Wang X. 3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale 2020;12:2924-38. [DOI: 10.1039/c9nr09620e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
72 Wang S, Yang X, Wu F, Min L, Chen X, Hou X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small 2019;16:1905318. [DOI: 10.1002/smll.201905318] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
73 Tong W, Karthik N, Li J, Wang N, Xiong D. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance. Langmuir 2019;35:15078-85. [DOI: 10.1021/acs.langmuir.9b02910] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
74 Cheng M, Liu Y, Zhong B, Wang H, Liu Y, Liang X, Chen W, Chen S, Li M, Xia W, Wang X. Superhydrophobic Surface with Controllable Adhesion for Anti‐Roof‐Collapse Application in Flexible Microfluidics. Adv Mater Interfaces 2019;6:1901178. [DOI: 10.1002/admi.201901178] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
75 Cao W, Ma C, Mao D, Zhang J, Ma M, Chen F. MXene‐Reinforced Cellulose Nanofibril Inks for 3D‐Printed Smart Fibres and Textiles. Adv Funct Mater 2019;29:1905898. [DOI: 10.1002/adfm.201905898] [Cited by in Crossref: 104] [Cited by in F6Publishing: 94] [Article Influence: 34.7] [Reference Citation Analysis]
76 Jiang H, Li J, Cao C, Liu X, Liu M, Shen Y, Liu Y, Zhang Q, Wang W, Gu L, Sun B. Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering. Nano Res 2019;12:2808-14. [DOI: 10.1007/s12274-019-2517-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
77 Zuo Y, Zheng L, Zhao C, Liu H. Micro‐/Nanostructured Interface for Liquid Manipulation and Its Applications. Small 2019;16:1903849. [DOI: 10.1002/smll.201903849] [Cited by in Crossref: 24] [Cited by in F6Publishing: 38] [Article Influence: 8.0] [Reference Citation Analysis]
78 Xiong Y, Xu L, Nie K, Jin C, Sun Q, Xu X. Green Construction of an Oil–Water Separator at Room Temperature and Its Promotion to an Adsorption Membrane. Langmuir 2019;35:11071-9. [DOI: 10.1021/acs.langmuir.9b01480] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
79 Sun S, Wang R, Huang Y, Xu J, Yao K, Liu W, Cao Y, Qian K. Design of Hierarchical Beads for Efficient Label-Free Cell Capture. Small 2019;15:e1902441. [PMID: 31237759 DOI: 10.1002/smll.201902441] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]