BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alqahtani MF, Katuri KP, Bajracharya S, Yu Y, Lai Z, Saikaly PE. Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis. Adv Funct Mater 2018;28:1804860. [DOI: 10.1002/adfm.201804860] [Cited by in Crossref: 45] [Cited by in F6Publishing: 22] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Noori MT, Vu MT, Ali RB, Min B. Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion. Chemical Engineering Journal 2020;392:123689. [DOI: 10.1016/j.cej.2019.123689] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 12.5] [Reference Citation Analysis]
2 Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresource Technology 2020;302:122863. [DOI: 10.1016/j.biortech.2020.122863] [Cited by in Crossref: 64] [Cited by in F6Publishing: 36] [Article Influence: 32.0] [Reference Citation Analysis]
3 Weliwatte NS, Minteer SD. Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule 2021;5:2564-92. [DOI: 10.1016/j.joule.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sapireddy V, Ragab A, Katuri KP, Yu Y, Lai Z, Li E, Thoroddsen ST, Saikaly PE. Effect of specific cathode surface area on biofouling in an anaerobic electrochemical membrane bioreactor: Novel insights using high-speed video camera. Journal of Membrane Science 2019;577:176-83. [DOI: 10.1016/j.memsci.2019.02.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
5 Bian B, Xu J, Katuri KP, Saikaly PE. Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates. Bioresour Technol 2021;319:124177. [PMID: 33035863 DOI: 10.1016/j.biortech.2020.124177] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Tian S, Yao X, Song T, Chu Z, Xie J, Jin W. Artificial Electron Mediator with Nanocubic Architecture Highly Promotes Microbial Electrosynthesis from Carbon Dioxide. ACS Sustainable Chem Eng 2020;8:6777-85. [DOI: 10.1021/acssuschemeng.0c01276] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
7 Park S, Rajesh P, Sim Y, Jadhav DA, Noori MT, Kim D, Al-qaradawi SY, Yang E, Jang J, Chae K. Addressing scale-up challenges and enhancement in performance of hydrogen-producing microbial electrolysis cell through electrode modifications. Energy Reports 2022;8:2726-46. [DOI: 10.1016/j.egyr.2022.01.198] [Reference Citation Analysis]
8 Krige A, Rova U, Christakopoulos P. 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata. Journal of Environmental Chemical Engineering 2021;9:106189. [DOI: 10.1016/j.jece.2021.106189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Tian S, He J, Huang H, Song T, Wu X, Xie J, Zhou W. Perovskite-Based Multifunctional Cathode with Simultaneous Supplementation of Substrates and Electrons for Enhanced Microbial Electrosynthesis of Organics. ACS Appl Mater Interfaces 2020;12:30449-56. [DOI: 10.1021/acsami.0c07910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Rabiee H, Ge L, Zhang X, Hu S, Li M, Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ Sci 2021;14:1959-2008. [DOI: 10.1039/d0ee03756g] [Cited by in Crossref: 14] [Article Influence: 14.0] [Reference Citation Analysis]
11 Ma X, Shen Y, Yao S, An C, Zhang W, Zhu J, Si R, Guo C, An C. Core–shell nanoporous AuCu 3 @Au monolithic electrode for efficient electrochemical CO 2 reduction. J Mater Chem A 2020;8:3344-50. [DOI: 10.1039/c9ta09471g] [Cited by in Crossref: 18] [Article Influence: 9.0] [Reference Citation Analysis]
12 Aryal N, Zhang Y, Bajracharya S, Pant D, Chen X. Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading. Chemosphere 2021;:132843. [PMID: 34767847 DOI: 10.1016/j.chemosphere.2021.132843] [Reference Citation Analysis]
13 Tabish Noori M, Min B. Highly Porous Fe x MnO y Microsphere as an Efficient Cathode Catalyst for Microbial Electrosynthesis of Volatile Fatty Acids from CO 2. ChemElectroChem 2019;6:5973-83. [DOI: 10.1002/celc.201901427] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
14 Rovira-alsina L, Perona-vico E, Bañeras L, Colprim J, Balaguer MD, Puig S. Thermophilic bio-electro CO 2 recycling into organic compounds. Green Chem 2020;22:2947-55. [DOI: 10.1039/d0gc00320d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Quraishi M, Wani K, Pandit S, Gupta PK, Rai AK, Lahiri D, Jadhav DA, Ray RR, Jung SP, Thakur VK, Prasad R. Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation 2021;7:291. [DOI: 10.3390/fermentation7040291] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Li Q, Fu Q, Kobayashi H, He Y, Li Z, Li J, Liao Q, Zhu X. GO/PEDOT modified biocathodes promoting CO 2 reduction to CH 4 in microbial electrosynthesis. Sustainable Energy Fuels 2020;4:2987-97. [DOI: 10.1039/d0se00321b] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Mohanakrishna G, Abu Reesh IM, Vanbroekhoven K, Pant D. Microbial electrosynthesis feasibility evaluation at high bicarbonate concentrations with enriched homoacetogenic biocathode. Science of The Total Environment 2020;715:137003. [DOI: 10.1016/j.scitotenv.2020.137003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
18 Tharak A, Venkata Mohan S. Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO2 to fatty acids in single chambered system. Bioresour Technol 2021;320:124272. [PMID: 33142252 DOI: 10.1016/j.biortech.2020.124272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
19 Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020;120:12903-93. [DOI: 10.1021/acs.chemrev.0c00472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
20 Li H, Xiao N, Wang Y, Li C, Ye X, Guo Z, Pan X, Liu C, Bai J, Xiao J, Zhang X, Zhao S, Qiu J. Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO 2 to syngas with potential-independent CO/H 2 ratios. J Mater Chem A 2019;7:18852-60. [DOI: 10.1039/c9ta05904k] [Cited by in Crossref: 23] [Article Influence: 7.7] [Reference Citation Analysis]
21 Cheng X, Shen Z, Jiao L, Yang L, Wang X, Wu Q, Hu Z. Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem 2021;3:100066. [DOI: 10.1016/j.enchem.2021.100066] [Reference Citation Analysis]
22 Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P. Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. Bioresour Technol 2022;:127178. [PMID: 35436538 DOI: 10.1016/j.biortech.2022.127178] [Reference Citation Analysis]
23 Chen Y, Su D, Chen Y, Zhu Z, Li W. Three-phase interface-assisted advanced electrochemistry-related applications. Cell Reports Physical Science 2021;2:100602. [DOI: 10.1016/j.xcrp.2021.100602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Igor V, Paolo D, Sebastià P, Marika K. Cathodic biofilms - A prerequisite for microbial electrosynthesis. Bioresour Technol 2022;:126788. [PMID: 35104648 DOI: 10.1016/j.biortech.2022.126788] [Reference Citation Analysis]
25 Jourdin L, Burdyny T. Microbial Electrosynthesis: Where Do We Go from Here? Trends Biotechnol 2021;39:359-69. [PMID: 33279279 DOI: 10.1016/j.tibtech.2020.10.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
26 Labelle EV, Marshall CW, May HD. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide. Acc Chem Res 2020;53:62-71. [DOI: 10.1021/acs.accounts.9b00522] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
27 Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. Chemosphere 2021;:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Reference Citation Analysis]
28 Gharbi R, Gomez Vidales A, Omanovic S, Tartakovsky B. Mathematical model of a microbial electrosynthesis cell for the conversion of carbon dioxide into methane and acetate. Journal of CO2 Utilization 2022;59:101956. [DOI: 10.1016/j.jcou.2022.101956] [Reference Citation Analysis]
29 Zhang X, Wang P, Lv X, Niu X, Lin X, Zhong S, Wang D, Lin H, Chen J, Bai S. Stacking Engineering of Semiconductor Heterojunctions on Hollow Carbon Spheres for Boosting Photocatalytic CO 2 Reduction. ACS Catal . [DOI: 10.1021/acscatal.1c05401] [Reference Citation Analysis]
30 Alqahtani MF, Bajracharya S, Katuri KP, Ali M, Xu J, Alarawi MS, Saikaly PE. Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply. Science of The Total Environment 2021;766:142668. [DOI: 10.1016/j.scitotenv.2020.142668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Bian B, Shi L, Katuri KP, Xu J, Wang P, Saikaly PE. Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode. Applied Energy 2020;278:115684. [DOI: 10.1016/j.apenergy.2020.115684] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
32 Limper A, Harhues T, Keller R, Linkhorst J, Wessling M. Two-level porosity electrodes from metal-polymer dispersions. Electrochemistry Communications 2022;135:107205. [DOI: 10.1016/j.elecom.2022.107205] [Reference Citation Analysis]
33 Kalathil S, Katuri KP, Alazmi AS, Pedireddy S, Kornienko N, Costa PMFJ, Saikaly PE. Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped Geobacter sulfurreducens as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reaction. Chem Mater 2019;31:3686-93. [DOI: 10.1021/acs.chemmater.9b00394] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 7.7] [Reference Citation Analysis]
34 Du J, Chen A. Ni nanoparticles confined by yolk-shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO2: Switching CO to formate. Journal of Energy Chemistry 2022;70:224-9. [DOI: 10.1016/j.jechem.2022.02.020] [Reference Citation Analysis]
35 Mao Z, Sun Y, Zhang Y, Ren X, Lin Z, Cheng S. Effect of start-up process using different electrochemical methods on the performance of CO2-reducing methanogenic biocathodes. International Journal of Hydrogen Energy 2021;46:3045-55. [DOI: 10.1016/j.ijhydene.2020.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
36 Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. Journal of CO2 Utilization 2021;51:101640. [DOI: 10.1016/j.jcou.2021.101640] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
37 Hegde S, Kumar A, Hegde G. Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. In: Singh L, Mahapatra DM, editors. Adapting 2D Nanomaterials for Advanced Applications. Washington: American Chemical Society; 2020. pp. 393-420. [DOI: 10.1021/bk-2020-1353.ch016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Gadkari S, Mirza Beigi BH, Aryal N, Sadhukhan J. Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? RSC Adv 2021;11:9921-32. [DOI: 10.1039/d1ra00920f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
39 Geng W, Wang L, Yang XY. Nanocell hybrids for green chemistry. Trends Biotechnol 2022:S0167-7799(22)00026-9. [PMID: 35210123 DOI: 10.1016/j.tibtech.2022.01.012] [Reference Citation Analysis]
40 Ma X, Shen Y, Yao S, Shu M, Si R, An C. Self-Supported Nanoporous Au3 Cu Electrode with Enriched Gold on Surface for Efficient Electrochemical Reduction of CO2. Chemistry 2019. [PMID: 31800117 DOI: 10.1002/chem.201904619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]