BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumar D, Workman VL, O'brien M, Mclaren J, White L, Ragunath K, Rose F, Saiani A, Gough JE. Peptide Hydrogels-A Tissue Engineering Strategy for the Prevention of Oesophageal Strictures. Adv Funct Mater 2017;27:1702424. [DOI: 10.1002/adfm.201702424] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Kulkarni N, Rao P, Jadhav GS, Kulkarni B, Kanakavalli N, Kirad S, Salunke S, Tanpure V, Sahu B. Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications. ACS Omega 2023. [DOI: 10.1021/acsomega.2c05601] [Reference Citation Analysis]
2 Ligorio C, Vijayaraghavan A, Hoyland JA, Saiani A. Acidic and basic self-assembling peptide and peptide-graphene oxide hydrogels: characterisation and effect on encapsulated nucleus pulposus cells. Acta Biomater 2022;143:145-58. [PMID: 35196554 DOI: 10.1016/j.actbio.2022.02.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
3 Bagley RHT, Jones ST. Deoxyribonucleic acid polymer nanoparticle hydrogels. Chem Commun (Camb) 2021;57:12111-4. [PMID: 34704568 DOI: 10.1039/d1cc05668a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Clough HC, O'Brien M, Zhu X, Miller AF, Saiani A, Tsigkou O. Neutrally charged self-assembling peptide hydrogel recapitulates in vitro mechanisms of breast cancer progression. Mater Sci Eng C Mater Biol Appl 2021;127:112200. [PMID: 34225853 DOI: 10.1016/j.msec.2021.112200] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
5 Diaferia C, Rosa E, Accardo A, Morelli G. Peptide-based hydrogels as delivery systems for doxorubicin. J Pept Sci 2021;:e3301. [PMID: 33491262 DOI: 10.1002/psc.3301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
6 Pérez-pedroza R, Ávila-ramírez A, Khan Z, Moretti M, Hauser CAE, De Santiago GT. Supramolecular Biopolymers for Tissue Engineering. Advances in Polymer Technology 2021;2021:1-23. [DOI: 10.1155/2021/8815006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Imere A, Ligorio C, O'Brien M, Wong JKF, Domingos M, Cartmell SH. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomater 2021;119:140-54. [PMID: 33189954 DOI: 10.1016/j.actbio.2020.11.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
8 Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev 2021;121:10908-49. [DOI: 10.1021/acs.chemrev.0c00923] [Cited by in Crossref: 57] [Cited by in F6Publishing: 70] [Article Influence: 19.0] [Reference Citation Analysis]
9 Chowdhuri S, Saha A, Pramanik B, Das S, Dowari P, Ukil A, Das D. Smart Thixotropic Hydrogels by Disulfide-Linked Short Peptides for Effective Three-Dimensional Cell Proliferation. Langmuir 2020;36:15450-62. [PMID: 33306395 DOI: 10.1021/acs.langmuir.0c03324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
10 Dowari P, Pramanik B, Das D. pH and secondary structure instructed aggregation to a thixotropic hydrogel by a peptide amphiphile. Bull Mater Sci 2020;43:70. [DOI: 10.1007/s12034-019-2027-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
11 Chiesa I, Ligorio C, Bonatti AF, De Acutis A, Smith AM, Saiani A, Vozzi G, De Maria C. Modeling the Three-Dimensional Bioprinting Process of β-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Front Med Technol 2020;2:571626. [DOI: 10.3389/fmedt.2020.571626] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
12 Burgess KA, Frati C, Meade K, Gao J, Castillo Diaz L, Madeddu D, Graiani G, Cavalli S, Miller AF, Oceandy D, Quaini F, Saiani A. Functionalised peptide hydrogel for the delivery of cardiac progenitor cells. Mater Sci Eng C Mater Biol Appl 2021;119:111539. [PMID: 33321610 DOI: 10.1016/j.msec.2020.111539] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
13 Redondo-Gómez C, Padilla-Lopategui S, Azevedo HS, Mata A. Host-Guest-Mediated Epitope Presentation on Self-Assembled Peptide Amphiphile Hydrogels. ACS Biomater Sci Eng 2020;6:4870-80. [PMID: 33455284 DOI: 10.1021/acsbiomaterials.0c00549] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
14 Mehrban N, Pineda Molina C, Quijano LM, Bowen J, Johnson SA, Bartolacci J, Chang JT, Scott DA, Woolfson DN, Birchall MA, Badylak SF. Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides. Acta Biomater 2020;111:141-52. [PMID: 32447065 DOI: 10.1016/j.actbio.2020.05.022] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
15 Chen X, Nishiguchi A, Taguchi T. Adhesive Submucosal Injection Material Based on the Nonanal Group-Modified Poly(vinyl alcohol)/α-Cyclodextrin Inclusion Complex for Endoscopic Submucosal Dissection. ACS Appl Bio Mater 2020;3:4370-9. [DOI: 10.1021/acsabm.0c00384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Sun B, Ariawan AD, Warren H, Goodchild SC, In Het Panhuis M, Ittner LM, Martin AD. Programmable enzymatic oxidation of tyrosine-lysine tetrapeptides. J Mater Chem B 2020;8:3104-12. [PMID: 32207762 DOI: 10.1039/d0tb00250j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
17 Nishiguchi A, Kurihara Y, Taguchi T. Underwater-adhesive microparticle dressing composed of hydrophobically-modified Alaska pollock gelatin for gastrointestinal tract wound healing. Acta Biomater 2019;99:387-96. [PMID: 31465884 DOI: 10.1016/j.actbio.2019.08.040] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
18 Lee AL, Yang C, Gao S, Hedrick JL, Yang YY. Subcutaneous vaccination using injectable biodegradable hydrogels for long-term immune response. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102056. [DOI: 10.1016/j.nano.2019.102056] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
19 Faroni A, Workman VL, Saiani A, Reid AJ. Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells. Adv Healthc Mater 2019;8:e1900410. [PMID: 31348622 DOI: 10.1002/adhm.201900410] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
20 Dasgupta A, Das D. Designer Peptide Amphiphiles: Self-Assembly to Applications. Langmuir 2019;35:10704-24. [DOI: 10.1021/acs.langmuir.9b01837] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 19.5] [Reference Citation Analysis]
21 Nishiguchi A, Sasaki F, Maeda H, Kabayama M, Ido A, Taguchi T. Multifunctional Hydrophobized Microparticles for Accelerated Wound Healing after Endoscopic Submucosal Dissection. Small 2019;15:1901566. [DOI: 10.1002/smll.201901566] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
22 Ligorio C, Zhou M, Wychowaniec JK, Zhu X, Bartlam C, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater 2019;92:92-103. [PMID: 31091473 DOI: 10.1016/j.actbio.2019.05.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 12.3] [Reference Citation Analysis]
23 Guilbaud-Chéreau C, Dinesh B, Schurhammer R, Collin D, Bianco A, Ménard-Moyon C. Protected Amino Acid-Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. ACS Appl Mater Interfaces 2019;11:13147-57. [PMID: 30865420 DOI: 10.1021/acsami.9b02482] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
24 Wychowaniec JK, Iliut M, Zhou M, Moffat J, Elsawy MA, Pinheiro WA, Hoyland JA, Miller AF, Vijayaraghavan A, Saiani A. Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions. Biomacromolecules 2018;19:2731-41. [PMID: 29672029 DOI: 10.1021/acs.biomac.8b00333] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]