BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tricoli A, Nasiri N, De S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv Funct Mater 2017;27:1605271. [DOI: 10.1002/adfm.201605271] [Cited by in Crossref: 183] [Cited by in F6Publishing: 109] [Article Influence: 36.6] [Reference Citation Analysis]
Number Citing Articles
1 Huynh T, Khatib M, Haick H. Self‐Healable Materials for Underwater Applications. Adv Mater Technol 2019;4:1900081. [DOI: 10.1002/admt.201900081] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
2 Gao B, Liu H, Gu Z. Flourishing Smart Flexible Membranes Beyond Paper. Anal Chem 2019;91:4224-34. [DOI: 10.1021/acs.analchem.9b00743] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
3 [DOI: 10.1109/wsc40007.2019.9004697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Adams S, Doeven EH, Quayle K, Kouzani A. MiniStat: Development and evaluation of a mini-potentiostat for electrochemical measurements. IEEE Access. [DOI: 10.1109/access.2019.2902575] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
5 Crapnell RD, Street RJ, Ferreira-Silva V, Down MP, Peeters M, Banks CE. Electrospun Nylon Fibers with Integrated Polypyrrole Molecularly Imprinted Polymers for the Detection of Glucose. Anal Chem 2021;93:13235-41. [PMID: 34549586 DOI: 10.1021/acs.analchem.1c02472] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ahmed SR, Chand R, Kumar S, Mittal N, Srinivasan S, Rajabzadeh AR. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends in Analytical Chemistry 2020;131:116006. [DOI: 10.1016/j.trac.2020.116006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
7 Huang Y, Yang F, Liu S, Wang R, Guo J, Ma X. Liquid Metal-Based Epidermal Flexible Sensor for Wireless Breath Monitoring and Diagnosis Enabled by Highly Sensitive SnS 2 Nanosheets. Research 2021;2021:1-13. [DOI: 10.34133/2021/9847285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kim SK, Jeon C, Lee GH, Koo J, Cho SH, Han S, Shin MH, Sim JY, Hahn SK. Hyaluronate-Gold Nanoparticle/Glucose Oxidase Complex for Highly Sensitive Wireless Noninvasive Glucose Sensors. ACS Appl Mater Interfaces 2019;11:37347-56. [PMID: 31502433 DOI: 10.1021/acsami.9b13874] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
9 Yang L, Yi N, Zhu J, Cheng Z, Yin X, Zhang X, Zhu H, Cheng H. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J Mater Chem A 2020;8:6487-500. [DOI: 10.1039/c9ta07855j] [Cited by in Crossref: 42] [Cited by in F6Publishing: 2] [Article Influence: 21.0] [Reference Citation Analysis]
10 Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. Nanotechnol Environ Eng 2021;6. [DOI: 10.1007/s41204-021-00109-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
11 Imran M, Alenezy E, Sabri Y, Wang T, Motta N, Tesfamichael T, Sonar P, Shafiei M. Enhanced amperometric acetone sensing using electrospun non-stoichiometric WO 3−x nanofibers. J Mater Chem C 2021;9:671-8. [DOI: 10.1039/d0tc04922k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
12 Yu H, Sun J. Sweat detection theory and fluid driven methods: A review. Nanotechnology and Precision Engineering 2020;3:126-40. [DOI: 10.1016/j.npe.2020.08.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
13 Imran M, Rashid SSAAH, Sabri Y, Motta N, Tesfamichael T, Sonar P, Shafiei M. Template based sintering of WO 3 nanoparticles into porous tungsten oxide nanofibers for acetone sensing applications. J Mater Chem C 2019;7:2961-70. [DOI: 10.1039/c8tc05982a] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
14 Mathew M, Shinde PV, Samal R, Rout CS. A review on mechanisms and recent developments in p-n heterojunctions of 2D materials for gas sensing applications. J Mater Sci 2021;56:9575-604. [DOI: 10.1007/s10853-021-05884-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 15.0] [Reference Citation Analysis]
15 Zhang Z, Azizi M, Lee M, Davidowsky P, Lawrence P, Abbaspourrad A. A versatile, cost-effective, and flexible wearable biosensor for in situ and ex situ sweat analysis, and personalized nutrition assessment. Lab Chip 2019;19:3448-60. [PMID: 31498355 DOI: 10.1039/c9lc00734b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 10.5] [Reference Citation Analysis]
16 Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021;194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Reference Citation Analysis]
17 Khorsand Kazemi K, Hu S, Niksan O, Adhikari KK, Tanguy NR, Li S, Arjmand M, Zarifi MH. Low‐Profile Planar Antenna Sensor Based on Ti 3 C 2 T x MXene Membrane for VOC and Humidity Monitoring. Adv Materials Inter 2022;9:2102411. [DOI: 10.1002/admi.202102411] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Gao Y, Mohammadifar M, Choi S. From Microbial Fuel Cells to Biobatteries: Moving toward On‐Demand Micropower Generation for Small‐Scale Single‐Use Applications. Adv Mater Technol 2019;4:1900079. [DOI: 10.1002/admt.201900079] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
19 Wu N, Chen S, Lin S, Li W, Xu Z, Yuan F, Huang L, Hu B, Zhou J. Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. J Mater Chem A 2018;6:5065-70. [DOI: 10.1039/c8ta00688a] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
20 Wentao W, Tao Z, Bulei S, Tongchang Z, Qicheng Z, Fan W, Ninglin Z, Jian S, Ming Z, Yi S. Functionalization of polyvinyl alcohol composite film wrapped in a-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing. Applied Materials Today 2019;17:36-44. [DOI: 10.1016/j.apmt.2019.07.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 9] [Article Influence: 10.3] [Reference Citation Analysis]
21 Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sensors and Actuators B: Chemical 2020;318:128104. [DOI: 10.1016/j.snb.2020.128104] [Cited by in Crossref: 60] [Cited by in F6Publishing: 9] [Article Influence: 30.0] [Reference Citation Analysis]
22 Shang L, Zhang W, Xu K, Zhao Y. Bio-inspired intelligent structural color materials. Mater Horiz 2019;6:945-58. [DOI: 10.1039/c9mh00101h] [Cited by in Crossref: 79] [Cited by in F6Publishing: 3] [Article Influence: 26.3] [Reference Citation Analysis]
23 Chang H, Zheng M, Chew SWT, Xu C. Advances in the Formulations of Microneedles for Manifold Biomedical Applications. Adv Mater Technol 2020;5:1900552. [DOI: 10.1002/admt.201900552] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 14.5] [Reference Citation Analysis]
24 Liu X, Chen X, Ju J, Wang X, Mei Z, Qu H, Xu Y, Zeng X. Platinum–Nickel Bimetallic Nanosphere–Ionic Liquid Interface for Electrochemical Oxygen and Hydrogen Sensing. ACS Appl Nano Mater 2019;2:2958-68. [DOI: 10.1021/acsanm.9b00380] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 Liu Y, Turner AP, Zhao M, Mak WC. Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing. Biosensors and Bioelectronics 2018;100:374-81. [DOI: 10.1016/j.bios.2017.09.021] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
26 Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends in Analytical Chemistry 2017;91:26-41. [DOI: 10.1016/j.trac.2017.04.001] [Cited by in Crossref: 149] [Cited by in F6Publishing: 65] [Article Influence: 29.8] [Reference Citation Analysis]
27 Nasiri N, Jin D, Tricoli A. Nanoarchitechtonics of Visible-Blind Ultraviolet Photodetector Materials: Critical Features and Nano-Microfabrication. Advanced Optical Materials 2019;7:1800580. [DOI: 10.1002/adom.201800580] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
28 Williams JC, Chandrahalim H, Suelzer JS, Usechak NG. Two‐Photon Nanomachining of a Micromechanically Enhanced Optical Cavity Sensor on an Optical Fiber Tip. Advanced Photonics Research. [DOI: 10.1002/adpr.202100359] [Reference Citation Analysis]
29 Fares H, Almokhtar M, Almarashi JQ, Rashad M, Moustafa S. Tunable narrow-linewidth surface plasmon resonances of graphene-wrapped dielectric nanoparticles in the visible and near-infrared. Physica E: Low-dimensional Systems and Nanostructures 2022;142:115300. [DOI: 10.1016/j.physe.2022.115300] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Tao X, Jin H, Mintken M, Wolff N, Wang Y, Tao R, Li Y, Torun H, Xie J, Luo J, Zhou J, Wu Q, Dong S, Luo J, Kienle L, Adelung R, Mishra YK, Fu YQ. Three-Dimensional Tetrapodal ZnO Microstructured Network Based Flexible Surface Acoustic Wave Device for Ultraviolet and Respiration Monitoring Applications. ACS Appl Nano Mater 2020;3:1468-78. [DOI: 10.1021/acsanm.9b02300] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
31 Mao Y, Guo L, Ning X, Li J, Zheng J. The Signal Amplification in Electrochemical Detection of Chloramphenicol Using Sulfonated Polyaniline-chitosan Composite as Redox Capacitor. Electroanalysis 2018;30:2085-93. [DOI: 10.1002/elan.201800218] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
32 Liao Y, Hsiao Y, Nagarjuna Y, Shieh J. The micro-electro-mechanical systems (MEMS) gas sensor with bilayer SnO2/WO3 films for ammonia detection. Microsyst Technol. [DOI: 10.1007/s00542-019-04732-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Sun Y, Zhao Z, Suematsu K, Li P, Zhang W, Hu J. Moisture-resisting acetone sensor based on MOF-derived ZnO-NiO nanocomposites. Materials Research Bulletin 2022;146:111607. [DOI: 10.1016/j.materresbull.2021.111607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Liao J, Ye C, Agrawal P, Gu Z, Zhang YS. Colloidal Photonic Crystals for Biomedical Applications. Small Structures 2021;2:2000110. [DOI: 10.1002/sstr.202000110] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
35 Demuru S, Kunnel BP, Briand D. Real‐Time Multi‐Ion Detection in the Sweat Concentration Range Enabled by Flexible, Printed, and Microfluidics‐Integrated Organic Transistor Arrays. Adv Mater Technol 2020;5:2000328. [DOI: 10.1002/admt.202000328] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
36 Zhou Y, Zhan P, Ren M, Zheng G, Dai K, Mi L, Liu C, Shen C. Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Appl Mater Interfaces 2019;11:7405-14. [DOI: 10.1021/acsami.8b20768] [Cited by in Crossref: 93] [Cited by in F6Publishing: 42] [Article Influence: 31.0] [Reference Citation Analysis]
37 Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O'Connor BT, Zhu Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Adv Mater 2020;32:e1902343. [PMID: 31464046 DOI: 10.1002/adma.201902343] [Cited by in Crossref: 96] [Cited by in F6Publishing: 66] [Article Influence: 48.0] [Reference Citation Analysis]
38 Nizamidin P, Maimaiti P, Kari N, Yimit A. Optical and gas-sensing property enhancement of membranes based on lithium iron phosphate particles with different dispersants. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-03973-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wang J, Soltanian S, Servati P, Ko F, Weng M. A knitted wearable flexible sensor for monitoring breathing condition. Journal of Engineered Fibers and Fabrics 2020;15:155892502093035. [DOI: 10.1177/1558925020930354] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
40 Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosensors and Bioelectronics 2017;98:494-506. [DOI: 10.1016/j.bios.2017.07.024] [Cited by in Crossref: 78] [Cited by in F6Publishing: 68] [Article Influence: 15.6] [Reference Citation Analysis]
41 Cappon G, Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics 2017;6:65. [DOI: 10.3390/electronics6030065] [Cited by in Crossref: 79] [Cited by in F6Publishing: 18] [Article Influence: 15.8] [Reference Citation Analysis]
42 Romeo A, Moya A, Leung TS, Gabriel G, Villa R, Sánchez S. Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis. Applied Materials Today 2018;10:133-41. [DOI: 10.1016/j.apmt.2017.12.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
43 Ige AO, Mohd Noor MH. A survey on unsupervised learning for wearable sensor-based activity recognition. Applied Soft Computing 2022. [DOI: 10.1016/j.asoc.2022.109363] [Reference Citation Analysis]
44 Chen F, Huang Y, Li R, Zhang S, Wang B, Zhang W, Wu X, Jiang Q, Wang F, Zhang R. Bio-inspired structural colors and their applications. Chem Commun (Camb) 2021;57:13448-64. [PMID: 34852027 DOI: 10.1039/d1cc04386b] [Reference Citation Analysis]
45 Jalal AH, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens 2018;3:1246-63. [PMID: 29879839 DOI: 10.1021/acssensors.8b00400] [Cited by in Crossref: 98] [Cited by in F6Publishing: 70] [Article Influence: 24.5] [Reference Citation Analysis]
46 Steinmann V, Moro L. Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. J Mater Res 2018;33:1925-36. [DOI: 10.1557/jmr.2018.194] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
47 Keene ST, Fogarty D, Cooke R, Casadevall CD, Salleo A, Parlak O. Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration. Adv Healthc Mater 2019;8:e1901321. [PMID: 31714014 DOI: 10.1002/adhm.201901321] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 16.7] [Reference Citation Analysis]
48 Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H. Weaving Sensing Fibers into Electrochemical Fabric for Real-Time Health Monitoring. Adv Funct Mater 2018;28:1804456. [DOI: 10.1002/adfm.201804456] [Cited by in Crossref: 139] [Cited by in F6Publishing: 104] [Article Influence: 34.8] [Reference Citation Analysis]
49 Kim H, Kwon G, Park C, You J, Park W. Anti-Counterfeiting Tags Using Flexible Substrate with Gradient Micropatterning of Silver Nanowires. Micromachines 2022;13:168. [DOI: 10.3390/mi13020168] [Reference Citation Analysis]
50 Taroni PJ, Santagiuliana G, Wan K, Calado P, Qiu M, Zhang H, Pugno NM, Palma M, Stingelin-stutzman N, Heeney M, Fenwick O, Baxendale M, Bilotti E. Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Adv Funct Mater 2018;28:1704285. [DOI: 10.1002/adfm.201704285] [Cited by in Crossref: 123] [Cited by in F6Publishing: 86] [Article Influence: 24.6] [Reference Citation Analysis]
51 Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, Sun X, Li C, Dong B, Wang L, Xu L. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC Trends in Analytical Chemistry 2021;140:116281. [DOI: 10.1016/j.trac.2021.116281] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
52 Zhang H, Ding X, Zhang X, Xu F. A smart ball sensor fabricated by laser kirigami of graphene for personalized long-term grip strength monitoring. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00156-w] [Reference Citation Analysis]
53 Guan Y, Song Y, Li H, Ye L, Lu B, Zang J, Yu Y. A universal respiration sensing platform utilizing surface water condensation. J Mater Chem C 2019;7:2853-64. [DOI: 10.1039/c8tc04971h] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
54 Sunny JS, Patro CPK, Karnani K, Pingle SC, Lin F, Anekoji M, Jones LD, Kesari S, Ashili S. Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects. Sensors 2022;22:756. [DOI: 10.3390/s22030756] [Reference Citation Analysis]
55 Pang Y, Yang Z, Yang Y, Ren TL. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small 2020;16:e1901124. [PMID: 31364311 DOI: 10.1002/smll.201901124] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 10.3] [Reference Citation Analysis]
56 Zhou C, Sun W, Jia L, Xu L, Dai K, Yan D, Li Z. Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Appl Mater Interfaces 2019;11:37094-102. [DOI: 10.1021/acsami.9b12504] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
57 Ghosh R, Pin KY, Reddy VS, Jayathilaka WADM, Ji D, Serrano-garcía W, Bhargava SK, Ramakrishna S, Chinnappan A. Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Applied Physics Reviews 2020;7:041309. [DOI: 10.1063/5.0010766] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
58 Kakavelakis G, Gagaoudakis E, Petridis K, Petromichelaki V, Binas V, Kiriakidis G, Kymakis E. Solution Processed CH3NH3PbI3-xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sens 2018;3:135-42. [PMID: 29192496 DOI: 10.1021/acssensors.7b00761] [Cited by in Crossref: 71] [Cited by in F6Publishing: 51] [Article Influence: 17.8] [Reference Citation Analysis]
59 Xu H, Lu YF, Xiang JX, Zhang MK, Zhao YJ, Xie ZY, Gu ZZ. A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 2018;10:2090-8. [DOI: 10.1039/c7nr07225b] [Cited by in Crossref: 80] [Cited by in F6Publishing: 16] [Article Influence: 20.0] [Reference Citation Analysis]
60 Zhai Q, Yap LW, Wang R, Gong S, Guo Z, Liu Y, Lyu Q, Wang J, Simon GP, Cheng W. Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis. Anal Chem 2020;92:4647-55. [DOI: 10.1021/acs.analchem.0c00274] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 18.0] [Reference Citation Analysis]
61 Fusco Z, Rahmani M, Bo R, Verre R, Motta N, Käll M, Neshev D, Tricoli A. Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds. Adv Mater 2018;30:e1800931. [PMID: 29862583 DOI: 10.1002/adma.201800931] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 9.5] [Reference Citation Analysis]
62 Searle T, Sencadas V, Greaves J, Alici G. Room-temperature self-healing piezoresistive sensors. Composites Science and Technology 2021;211:108856. [DOI: 10.1016/j.compscitech.2021.108856] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Kozejova D, Fecova L, Klein P, Sabol R, Hudak R, Sulla I, Mudronova D, Galik J, Varga R. Biomedical applications of glass-coated microwires. Journal of Magnetism and Magnetic Materials 2019;470:2-5. [DOI: 10.1016/j.jmmm.2017.11.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 9.3] [Reference Citation Analysis]
64 Chen H, Zhang M, Bo R, Barugkin C, Zheng J, Ma Q, Huang S, Ho-Baillie AWY, Catchpole KR, Tricoli A. Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites. Small 2018;14. [PMID: 29280263 DOI: 10.1002/smll.201702571] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
65 Miao J, Lin JY. Nanometer-Thick Films of Aligned ZnO Nanowires Sensitized with Au Nanoparticles for Few-ppb-Level Acetylene Detection. ACS Appl Nano Mater 2020;3:9174-84. [DOI: 10.1021/acsanm.0c01807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Xu H, Xiang JX, Lu YF, Zhang MK, Li JJ, Gao BB, Zhao YJ, Gu ZZ. Multifunctional Wearable Sensing Devices Based on Functionalized Graphene Films for Simultaneous Monitoring of Physiological Signals and Volatile Organic Compound Biomarkers. ACS Appl Mater Interfaces 2018;10:11785-93. [DOI: 10.1021/acsami.8b00073] [Cited by in Crossref: 44] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
67 Wen N, Fan Z, Yang S, Zhao Y, Li C, Cong T, Huang H, Zhang J, Guan X, Pan L. High-performance stretchable thermoelectric fibers for wearable electronics. Chemical Engineering Journal 2021;426:130816. [DOI: 10.1016/j.cej.2021.130816] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
68 Adhikari PR, Reid RC, Mahbub I. High power density and bias-free reverse electrowetting energy harvesting using surface area enhanced porous electrodes. Journal of Power Sources 2022;517:230726. [DOI: 10.1016/j.jpowsour.2021.230726] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
69 Xu H, Zhang MK, Lu YF, Li JJ, Ge SJ, Gu ZZ. Dual‐Mode Wearable Strain Sensor Based on Graphene/Colloidal Crystal Films for Simultaneously Detection of Subtle and Large Human Motions. Adv Mater Technol 2019;5:1901056. [DOI: 10.1002/admt.201901056] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
70 Hauke A, Ehrlich S, Levine L, Heikenfeld J. An Improved Design and Versatile New Lamination Fabrication Method for Twin Electrode Thin Layer Cells Utilizing Track‐etch Membranes. Electroanalysis 2019;31:58-65. [DOI: 10.1002/elan.201800539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Chen C, Lee P, Tsao Y, Lin Z. Utilization of self-powered electrochemical systems: Metallic nanoparticle synthesis and lactate detection. Nano Energy 2017;42:241-8. [DOI: 10.1016/j.nanoen.2017.10.064] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 12.2] [Reference Citation Analysis]
72 Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2020;8:7303-18. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
73 Basodan RAM, Park B, Chung H. Smart personal protective equipment (PPE): current PPE needs, opportunities for nanotechnology and e-textiles. Flex Print Electron 2021;6:043004. [DOI: 10.1088/2058-8585/ac32a9] [Reference Citation Analysis]
74 Mano T, Nagamine K, Ichimura Y, Shiwaku R, Furusawa H, Matsui H, Kumaki D, Tokito S. Printed Organic Transistor‐Based Enzyme Sensor for Continuous Glucose Monitoring in Wearable Healthcare Applications. ChemElectroChem 2018;5:3881-6. [DOI: 10.1002/celc.201801129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
75 Xu X, Yan B. A fluorescent wearable platform for sweat Cl analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J Mater Chem C 2018;6:1863-9. [DOI: 10.1039/c7tc05204a] [Cited by in Crossref: 39] [Article Influence: 9.8] [Reference Citation Analysis]
76 Lin J, Zhu Z, Cheung CF, Yan F, Li G. Digital manufacturing of functional materials for wearable electronics. J Mater Chem C 2020;8:10587-603. [DOI: 10.1039/d0tc01112f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
77 Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2020;92:378-96. [DOI: 10.1021/acs.analchem.9b04668] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
78 Americo S, Pargoletti E, Soave R, Cargnoni F, Trioni MI, Chiarello GL, Cerrato G, Cappelletti G. Unveiling the acetone sensing mechanism by WO3 chemiresistors through a joint theory-experiment approach. Electrochimica Acta 2021;371:137611. [DOI: 10.1016/j.electacta.2020.137611] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
79 de Oliveira GCM, Camargo JR, Vieira NCS, Janegitz BC. A new disposable electrochemical sensor on medical adhesive tape. J Solid State Electrochem 2020;24:2271-8. [DOI: 10.1007/s10008-020-04732-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
80 Freckmann G, Mende J. Continuous glucose monitoring: data management and evaluation by patients and health care professionals – current situation and developments. LaboratoriumsMedizin 2018;42:225-33. [DOI: 10.1515/labmed-2018-0119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
81 Pargoletti E, Hossain UH, Di Bernardo I, Chen H, Tran-Phu T, Lipton-Duffin J, Cappelletti G, Tricoli A. Room-temperature photodetectors and VOC sensors based on graphene oxide-ZnO nano-heterojunctions. Nanoscale 2019;11:22932-45. [PMID: 31763664 DOI: 10.1039/c9nr08901b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
82 Mccaul M, Glennon T, Diamond D. Challenges and opportunities in wearable technology for biochemical analysis in sweat. Current Opinion in Electrochemistry 2017;3:46-50. [DOI: 10.1016/j.coelec.2017.06.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 6.6] [Reference Citation Analysis]
83 Wen F, He T, Liu H, Chen H, Zhang T, Lee C. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 2020;78:105155. [DOI: 10.1016/j.nanoen.2020.105155] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 16.5] [Reference Citation Analysis]
84 Wang F, Chai X, Fu X, Mao G, Wang H. Fabrication of nitrogen-enriched carbon dots with green fluorescence for enzyme-free detection of uric acid. New J Chem . [DOI: 10.1039/d2nj02538h] [Reference Citation Analysis]
85 Chen H, Bo R, Shrestha A, Xin B, Nasiri N, Zhou J, Di Bernardo I, Dodd A, Saunders M, Lipton‐duffin J, White T, Tsuzuki T, Tricoli A. NiO–ZnO Nanoheterojunction Networks for Room‐Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials 2018;6:1800677. [DOI: 10.1002/adom.201800677] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 9.3] [Reference Citation Analysis]
86 Deroco PB, Wachholz Junior D, Kubota LT. Paper‐based Wearable Electrochemical Sensors: a New Generation of Analytical Devices. Electroanalysis. [DOI: 10.1002/elan.202200177] [Reference Citation Analysis]
87 Gao B, Wang X, Li T, Feng Z, Wang C, Gu Z. Gecko-Inspired Paper Artificial Skin for Intimate Skin Contact and Multisensing. Adv Mater Technol 2019;4:1800392. [DOI: 10.1002/admt.201800392] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
88 Wan C, Cai P, Wang M, Qian Y, Huang W, Chen X. Artificial Sensory Memory. Adv Mater 2020;32:e1902434. [PMID: 31364219 DOI: 10.1002/adma.201902434] [Cited by in Crossref: 96] [Cited by in F6Publishing: 81] [Article Influence: 48.0] [Reference Citation Analysis]
89 Zhai Q, Cheng W. Soft and stretchable electrochemical biosensors. Materials Today Nano 2019;7:100041. [DOI: 10.1016/j.mtnano.2019.100041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
90 Chen H, Zhang M, Xing B, Fu X, Bo R, Mulmudi HK, Huang S, Ho‐baillie AWY, Catchpole KR, Tricoli A. Superior Self‐Charged and ‐Powered Chemical Sensing with High Performance for NO 2 Detection at Room Temperature. Adv Optical Mater 2020;8:1901863. [DOI: 10.1002/adom.201901863] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
91 Baldo TA, de Lima LF, Mendes LF, de Araujo WR, Paixão TRLC, Coltro WKT. Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Appl Electron Mater 2021;3:68-100. [DOI: 10.1021/acsaelm.0c00735] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
92 Demuru S, Huang C, Parvez K, Worsley R, Mattana G, Piro B, Noël V, Casiraghi C, Briand D. All-Inkjet-Printed Graphene-Gated Organic Electrochemical Transistors on Polymeric Foil as Highly Sensitive Enzymatic Biosensors. ACS Appl Nano Mater 2022;5:1664-73. [DOI: 10.1021/acsanm.1c04434] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Yoon JW, Lee JH. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. Lab Chip 2017;17:3537-57. [PMID: 28971204 DOI: 10.1039/c7lc00810d] [Cited by in Crossref: 89] [Cited by in F6Publishing: 13] [Article Influence: 22.3] [Reference Citation Analysis]
94 He Z, Li S, Zeng Y, Zhang J, Li Q, Gao B, Du X, Gu Z. Photo‐Adjustable TiO 2 ‐Paper as a Smart Substrate for Paper‐Based Analytical Devices. Adv Materials Inter 2022;9:2101450. [DOI: 10.1002/admi.202101450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Yan H, Zhong M, Lv Z, Wan P. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing. Small 2017;13:1701697. [DOI: 10.1002/smll.201701697] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 9.2] [Reference Citation Analysis]
96 Koo JH, Kim DC, Shim HJ, Kim T, Kim D. Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Adv Funct Mater 2018;28:1801834. [DOI: 10.1002/adfm.201801834] [Cited by in Crossref: 216] [Cited by in F6Publishing: 162] [Article Influence: 54.0] [Reference Citation Analysis]
97 Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab Chip 2018;18:1812-30. [DOI: 10.1039/c8lc00025e] [Cited by in Crossref: 62] [Cited by in F6Publishing: 14] [Article Influence: 15.5] [Reference Citation Analysis]
98 Lee YH, Kweon OY, Kim H, Yoo JH, Han SG, Oh JH. Recent advances in organic sensors for health self-monitoring systems. J Mater Chem C 2018;6:8569-612. [DOI: 10.1039/c8tc02230e] [Cited by in Crossref: 59] [Cited by in F6Publishing: 2] [Article Influence: 14.8] [Reference Citation Analysis]
99 Unger K, Greco F, Coclite AM. Temporary Tattoo pH Sensor with pH‐Responsive Hydrogel via Initiated Chemical Vapor Deposition. Adv Materials Technologies 2022;7:2100717. [DOI: 10.1002/admt.202100717] [Reference Citation Analysis]
100 Yang Y, Zhao G, Cheng X, Deng H, Fu Q. Stretchable and Healable Conductive Elastomer Based on PEDOT:PSS/Natural Rubber for Self-Powered Temperature and Strain Sensing. ACS Appl Mater Interfaces 2021;13:14599-611. [PMID: 33751880 DOI: 10.1021/acsami.1c00879] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
101 An Y, Mao Y, Zhang L, Jin B, Xiao K, Wei X, Yan J. RAHM: Relation augmented hierarchical multi-task learning framework for reasonable medication stocking. J Biomed Inform 2020;108:103502. [PMID: 32673789 DOI: 10.1016/j.jbi.2020.103502] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Ibanez JG, Rincón ME, Gutierrez-granados S, Chahma M, Jaramillo-quintero OA, Frontana-uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018;118:4731-816. [DOI: 10.1021/acs.chemrev.7b00482] [Cited by in Crossref: 173] [Cited by in F6Publishing: 75] [Article Influence: 43.3] [Reference Citation Analysis]
103 Busolo T, Ura DP, Kim SK, Marzec MM, Bernasik A, Stachewicz U, Kar-narayan S. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy 2019;57:500-6. [DOI: 10.1016/j.nanoen.2018.12.037] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 11.3] [Reference Citation Analysis]
104 Zhong B, Jiang K, Wang L, Shen G. Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. Adv Sci (Weinh) 2022;9:e2103257. [PMID: 34713981 DOI: 10.1002/advs.202103257] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
105 Stegemann S. Patient centric drug product design in modern drug delivery as an opportunity to increase safety and effectiveness. Expert Opinion on Drug Delivery 2018;15:619-27. [DOI: 10.1080/17425247.2018.1472571] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
106 Zheng X, Cheng H. Flexible and stretchable metal oxide gas sensors for healthcare. Sci China Technol Sci 2019;62:209-23. [DOI: 10.1007/s11431-018-9397-5] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
107 Adhikari PR, Patwary AB, Kakaraparty K, Gunti A, Reid RC, Mahbub I. Advancing Reverse Electrowetting‐on‐Dielectric from Planar to Rough Surface Electrodes for High Power Density Energy Harvesting. Energy Tech. [DOI: 10.1002/ente.202100867] [Reference Citation Analysis]
108 Du K, Lin R, Yin L, Ho JS, Wang J, Lim CT. Electronic textiles for energy, sensing, and communication. iScience 2022;25:104174. [DOI: 10.1016/j.isci.2022.104174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Khatib M, Zohar O, Haick H. Self-Healing Soft Sensors: From Material Design to Implementation. Adv Mater 2021;33:e2004190. [PMID: 33533124 DOI: 10.1002/adma.202004190] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 37.0] [Reference Citation Analysis]
110 La T, Le LH. Flexible and Wearable Ultrasound Device for Medical Applications: A Review on Materials, Structural Designs, and Current Challenges. Adv Materials Technologies 2022;7:2100798. [DOI: 10.1002/admt.202100798] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Chen M, Nguyen TT, Varongchayakul N, Grazon C, Chern M, Baer RC, Lecommandoux S, Klapperich CM, Galagan JE, Dennis AM, Grinstaff MW. Surface Immobilized Nucleic Acid-Transcription Factor Quantum Dots for Biosensing. Adv Healthc Mater 2020;9:e2000403. [PMID: 32691962 DOI: 10.1002/adhm.202000403] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
112 Zhu M, Shi Q, He T, Yi Z, Ma Y, Yang B, Chen T, Lee C. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano 2019;13:1940-52. [PMID: 30741521 DOI: 10.1021/acsnano.8b08329] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 25.0] [Reference Citation Analysis]
113 Lee E, Yoon YS, Kim DJ. Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens 2018;3:2045-60. [PMID: 30270624 DOI: 10.1021/acssensors.8b01077] [Cited by in Crossref: 195] [Cited by in F6Publishing: 134] [Article Influence: 48.8] [Reference Citation Analysis]
114 Lin Z, Meng Z, Miao H, Wu R, Qiu W, Lin N, Liu XY. Biomimetic Salinity Power Generation Based on Silk Fibroin Ion-Exchange Membranes. ACS Nano 2021;15:5649-60. [PMID: 33660992 DOI: 10.1021/acsnano.1c00820] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
115 Vaquer A, Barón E, de la Rica R. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sens 2021;6:130-6. [PMID: 33371672 DOI: 10.1021/acssensors.0c01980] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
116 Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring. ACS Nano 2018;12:6156-62. [PMID: 29847095 DOI: 10.1021/acsnano.8b02562] [Cited by in Crossref: 140] [Cited by in F6Publishing: 112] [Article Influence: 35.0] [Reference Citation Analysis]
117 Zhang Y, Zhao Y, Zhou T, Wu Q. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab Chip 2018;18:57-74. [DOI: 10.1039/c7lc00641a] [Cited by in Crossref: 55] [Cited by in F6Publishing: 9] [Article Influence: 13.8] [Reference Citation Analysis]
118 Chen H, Zhang M, Fu X, Fusco Z, Bo R, Xing B, Nguyen HT, Barugkin C, Zheng J, Lau CFJ, Huang S, Ho-Baillie AWY, Catchpole KR, Tricoli A. Light-activated inorganic CsPbBr2I perovskite for room-temperature self-powered chemical sensing. Phys Chem Chem Phys 2019;21:24187-93. [PMID: 31658307 DOI: 10.1039/c9cp03059j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]