BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett. 2016;590:2375-2397. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Duarte TL, Caldas C, Santos AG, Silva-Gomes S, Santos-Gonçalves A, Martins MJ, Porto G, Lopes JM. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol 2017;11:157-69. [PMID: 27936457 DOI: 10.1016/j.redox.2016.11.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
2 Hennig P, Fenini G, Di Filippo M, Karakaya T, Beer HD. The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer. Biomedicines 2021;9:707. [PMID: 34206503 DOI: 10.3390/biomedicines9070707] [Reference Citation Analysis]
3 Sukseree S, Bakiri L, Palomo-Irigoyen M, Uluçkan Ö, Petzelbauer P, Wagner EF. Sequestosome 1/p62 enhances chronic skin inflammation. J Allergy Clin Immunol 2021;147:2386-2393.e4. [PMID: 33675820 DOI: 10.1016/j.jaci.2021.02.028] [Reference Citation Analysis]
4 He F, Ru X, Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020;21:E4777. [PMID: 32640524 DOI: 10.3390/ijms21134777] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 64.0] [Reference Citation Analysis]
5 Zhang W, Li X, Liu Y, Chen H, Gong J. Activation of imidazoline I 1 receptor by moxonidine regulates the progression of liver fibrosis in the Nrf2-dependent pathway. Biomedicine & Pharmacotherapy 2017;90:821-34. [DOI: 10.1016/j.biopha.2017.04.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
6 Longo M, Paolini E, Meroni M, Dongiovanni P. Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC. Int J Mol Sci 2021;22:4173. [PMID: 33920670 DOI: 10.3390/ijms22084173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Santana SS, Pitanga TN, de Santana JM, Zanette DL, Vieira JJ, Yahouédéhou SCMA, Adanho CSA, Viana SM, Luz NF, Borges VM, Goncalves MS. Hydroxyurea Scavenges Free Radicals and Induces the Expression of Antioxidant Genes in Human Cell Cultures Treated With Hemin. Front Immunol 2020;11:1488. [PMID: 32765515 DOI: 10.3389/fimmu.2020.01488] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Battaglia C, Venturin M, Sojic A, Jesuthasan N, Orro A, Spinelli R, Musicco M, De Bellis G, Adorni F. Candidate Genes and MiRNAs Linked to the Inverse Relationship Between Cancer and Alzheimer's Disease: Insights From Data Mining and Enrichment Analysis. Front Genet 2019;10:846. [PMID: 31608105 DOI: 10.3389/fgene.2019.00846] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
9 Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021;183:2364-75. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Kosumi K, Masugi Y, Yang J, Qian ZR, Kim SA, Li W, Shi Y, da Silva A, Hamada T, Liu L, Gu M, Twombly TS, Cao Y, Barbie DA, Nosho K, Baba H, Garrett WS, Meyerhardt JA, Giovannucci EL, Chan AT, Fuchs CS, Ogino S, Nishihara R. Tumor SQSTM1 (p62) expression and T cells in colorectal cancer. Oncoimmunology 2017;6:e1284720. [PMID: 28405513 DOI: 10.1080/2162402X.2017.1284720] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
11 Mirra S, Gavaldà-Navarro A, Manso Y, Higuera M, Serrat R, Salcedo MT, Burgaya F, Balibrea JM, Santamaría E, Uriarte I, Berasain C, Avila MA, Mínguez B, Soriano E, Villarroya F. ARMCX3 Mediates Susceptibility to Hepatic Tumorigenesis Promoted by Dietary Lipotoxicity. Cancers (Basel) 2021;13:1110. [PMID: 33807672 DOI: 10.3390/cancers13051110] [Reference Citation Analysis]
12 Mao Y, Deng SJ, Su YJ, Diao C, Peng Y, Ma JF, Cheng RC. The role of P62 in the development of human thyroid cancer and its possible mechanism. Cancer Genet 2021;256-257:5-16. [PMID: 33780725 DOI: 10.1016/j.cancergen.2021.02.008] [Reference Citation Analysis]
13 Ko JH, Yoon SO, Lee HJ, Oh JY. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 2017;8:40817-31. [PMID: 28489580 DOI: 10.18632/oncotarget.17256] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 19.7] [Reference Citation Analysis]
14 Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol Ther 2018;191:1-22. [PMID: 29909238 DOI: 10.1016/j.pharmthera.2018.06.004] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
15 Xiao B, Cui Y, Wang Y, Liu M, Liu P, Zhang J, Zhang X, Song M, Han Y, Li Y. Parkin-mediated mitochondrial quality control protects against aluminum-induced liver damage in mice. Food Chem Toxicol 2021;156:112485. [PMID: 34375723 DOI: 10.1016/j.fct.2021.112485] [Reference Citation Analysis]
16 Sukkar MB, Harris J. Potential impact of oxidative stress induced growth inhibitor 1 (OSGIN1) on airway epithelial cell autophagy in chronic obstructive pulmonary disease (COPD). J Thorac Dis 2017;9:4825-7. [PMID: 29312667 DOI: 10.21037/jtd.2017.10.153] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
17 Shen L, Xia M, Zhang Y, Luo H, Dong D, Sun L. Mitochondrial integration and ovarian cancer chemotherapy resistance. Exp Cell Res 2021;401:112549. [PMID: 33640393 DOI: 10.1016/j.yexcr.2021.112549] [Reference Citation Analysis]
18 Gutierrez DB, Gant-Branum RL, Romer CE, Farrow MA, Allen JL, Dahal N, Nei YW, Codreanu SG, Jordan AT, Palmer LD, Sherrod SD, McLean JA, Skaar EP, Norris JL, Caprioli RM. An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis. J Proteome Res 2018;17:3396-408. [PMID: 30114907 DOI: 10.1021/acs.jproteome.8b00302] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
19 Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021;57:131-47. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. Liver Res. 2018;2:161-172. [PMID: 31214376 DOI: 10.1016/j.livres.2018.11.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
21 Zhou W, Fang D, He Y, Wei J. Correlation analysis of tumor mutation burden of hepatocellular carcinoma based on data mining. J Gastrointest Oncol 2021;12:1117-31. [PMID: 34295561 DOI: 10.21037/jgo-21-259] [Reference Citation Analysis]
22 He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020;41:405-16. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
23 Strathearn LS, Stepanov AI, Font-Burgada J. Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020;12:E933. [PMID: 32230953 DOI: 10.3390/nu12040933] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
24 Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019;20:E4659. [PMID: 31546975 DOI: 10.3390/ijms20184659] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
25 Wang JL, Wang JJ, Cai ZN, Xu CJ. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int J Mol Med 2018;42:2481-8. [PMID: 30226560 DOI: 10.3892/ijmm.2018.3847] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
26 Waisner H, Kalamvoki M. The ICP0 Protein of Herpes Simplex Virus 1 (HSV-1) Downregulates Major Autophagy Adaptor Proteins Sequestosome 1 and Optineurin during the Early Stages of HSV-1 Infection. J Virol 2019;93:e01258-19. [PMID: 31375597 DOI: 10.1128/JVI.01258-19] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
27 Lee DH, Park JS, Lee YS, Han J, Lee DK, Kwon SW, Han DH, Lee YH, Bae SH. SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity. Autophagy 2020;16:1949-73. [PMID: 31913745 DOI: 10.1080/15548627.2020.1712108] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
28 Heidari S, Mahdiani S, Hashemi M, Kalalinia F. Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotechnol Appl Biochem 2020;67:430-41. [PMID: 31978939 DOI: 10.1002/bab.1891] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
29 Skowron MA, Niegisch G, Albrecht P, van Koeveringe G, Romano A, Albers P, Schulz WA, Hoffmann MJ. Various Mechanisms Involve the Nuclear Factor (Erythroid-Derived 2)-Like (NRF2) to Achieve Cytoprotection in Long-Term Cisplatin-Treated Urothelial Carcinoma Cell Lines. Int J Mol Sci 2017;18:E1680. [PMID: 28767070 DOI: 10.3390/ijms18081680] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
30 Durand JK, Zhang Q, Baldwin AS. Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018;7:E139. [PMID: 30223576 DOI: 10.3390/cells7090139] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
31 Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, Liang X, Ruan Z, Jiang L, Yao Y, Nan K, Lv Y, Guo H. Autophagy in the "inflammation-carcinogenesis" pathway of liver and HCC immunotherapy. Cancer Lett 2017;411:82-9. [PMID: 28987386 DOI: 10.1016/j.canlet.2017.09.049] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
32 Chao X, Qian H, Wang S, Fulte S, Ding WX. Autophagy and liver cancer. Clin Mol Hepatol 2020;26:606-17. [PMID: 33053934 DOI: 10.3350/cmh.2020.0169] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
33 Damiano V, Spessotto P, Vanin G, Perin T, Maestro R, Santarosa M. The Autophagy Machinery Contributes to E-cadherin Turnover in Breast Cancer. Front Cell Dev Biol 2020;8:545. [PMID: 32714931 DOI: 10.3389/fcell.2020.00545] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Hou H, Li WX, Cui X, Zhou DC, Zhang B, Geng XP. CARMA3/NF-κB signaling contributes to tumorigenesis of hepatocellular carcinoma and is inhibited by sodium aescinate. World J Gastroenterol 2019; 25(36): 5483-5493 [PMID: 31576094 DOI: 10.3748/wjg.v25.i36.5483] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Cui J, Shen HM, Lim LHK. The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2020;13:E432. [PMID: 33260729 DOI: 10.3390/ph13120432] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
36 Liu X, Mi X, Wang Z, Zhang M, Hou J, Jiang S, Wang Y, Chen C, Li W. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis 2020;11:454. [PMID: 32532964 DOI: 10.1038/s41419-020-2597-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol 2017;33:113-28. [PMID: 27900566 DOI: 10.1007/s10565-016-9371-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 79] [Article Influence: 17.2] [Reference Citation Analysis]
38 He F, Antonucci L, Yamachika S, Zhang Z, Taniguchi K, Umemura A, Hatzivassiliou G, Roose-Girma M, Reina-Campos M, Duran A, Diaz-Meco MT, Moscat J, Sun B, Karin M. NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. J Hepatol 2020;72:1182-95. [PMID: 32105670 DOI: 10.1016/j.jhep.2020.01.023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
39 Memmert S, Nogueira AVB, Damanaki A, Nokhbehsaim M, Rath-Deschner B, Götz W, Gölz L, Cirelli JA, Till A, Jäger A, Deschner J. Regulation of the autophagy-marker Sequestosome 1 in periodontal cells and tissues by biomechanical loading. J Orofac Orthop 2020;81:10-21. [PMID: 31591651 DOI: 10.1007/s00056-019-00197-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
40 Shiau JY, Nakagawa-Goto K, Lee KH, Shyur LF. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget 2017;8:56942-58. [PMID: 28915644 DOI: 10.18632/oncotarget.18183] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
41 Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, Maimouni S, Daguplo HQ, Coppola S, Gao Y, Wang Y, Du Z, Peng K, Liu H, Zhang Q, Tang F, Wang P, Gao S, Wang Y, Ding WX, Guo G, Wang F, Zong WX. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol 2021;11:1369-85. [PMID: 33482392 DOI: 10.1016/j.jcmgh.2021.01.007] [Reference Citation Analysis]
42 Islam MA, Sooro MA, Zhang P. Autophagic Regulation of p62 is Critical for Cancer Therapy. Int J Mol Sci. 2018;19. [PMID: 29738493 DOI: 10.3390/ijms19051405] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 23.7] [Reference Citation Analysis]
43 Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13(1): 6-65 [PMID: 33584986 DOI: 10.4254/wjh.v13.i1.6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
44 Guilbert SM, Lambert H, Rodrigue M, Fuchs M, Landry J, Lavoie JN. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency. FASEB j 2018;32:3518-35. [DOI: 10.1096/fj.201700558rr] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 8.7] [Reference Citation Analysis]
45 Klepikova AV, Kasianov AS, Chesnokov MS, Lazarevich NL, Penin AA, Logacheva M. Effect of method of deduplication on estimation of differential gene expression using RNA-seq. PeerJ 2017;5:e3091. [PMID: 28321364 DOI: 10.7717/peerj.3091] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
46 Yasuda D, Ohe T, Takahashi K, Imamura R, Kojima H, Okabe T, Ichimura Y, Komatsu M, Yamamoto M, Nagano T, Mashino T. Inhibitors of the protein-protein interaction between phosphorylated p62 and Keap1 attenuate chemoresistance in a human hepatocellular carcinoma cell line. Free Radic Res. 2020;1-13. [PMID: 32075457 DOI: 10.1080/10715762.2020.1732955] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
47 Wang Y, Ji C, Wang Y, Ji M, Yang J, Zhou C. Predicting postoperative liver cancer death outcomes with machine learning. Current Medical Research and Opinion 2021;37:629-34. [DOI: 10.1080/03007995.2021.1885361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Wang T, Huang XY, Zheng SJ, Liu YY, Chen SS, Ren F, Lu J, Duan ZP, Liu M. Serum Anti-14-3-3 Zeta Autoantibody as a Biomarker for Predicting Hepatocarcinogenesis. Front Oncol 2021;11:733680. [PMID: 34722278 DOI: 10.3389/fonc.2021.733680] [Reference Citation Analysis]
49 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411-428. [PMID: 31028350 DOI: 10.1038/s41575-019-0145-7] [Cited by in Crossref: 268] [Cited by in F6Publishing: 275] [Article Influence: 134.0] [Reference Citation Analysis]
50 Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18:309-24. [DOI: 10.1038/nri.2017.142] [Cited by in Crossref: 718] [Cited by in F6Publishing: 705] [Article Influence: 239.3] [Reference Citation Analysis]
51 Denk H, Stumptner C, Abuja PM, Zatloukal K. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019;23:393-406. [PMID: 30987486 DOI: 10.1080/14728222.2019.1601703] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
52 Havaki S, Vlachou V, Zampetidis CP, Selemenakis P, Kotsinas A, Mavrogonatou E, Rizou SV, Kyrodimos E, Evangelou K, Kletsas D, Giatromanolaki A, Gorgoulis VG. Monitoring Autophagy Immunohistochemically and Ultrastructurally during Human Head and Neck Carcinogenesis. Relationship with the DNA Damage Response Pathway. Int J Mol Sci 2017;18:E1920. [PMID: 28880214 DOI: 10.3390/ijms18091920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
53 Medvedev R, Ploen D, Spengler C, Elgner F, Ren H, Bunten S, Hildt E. HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles. Free Radic Biol Med. 2017;110:300-315. [PMID: 28673615 DOI: 10.1016/j.freeradbiomed.2017.06.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
54 Haga S, Yimin , Ozaki M. Relevance of FXR-p62/SQSTM1 pathway for survival and protection of mouse hepatocytes and liver, especially with steatosis. BMC Gastroenterol. 2017;17:9. [PMID: 28086800 DOI: 10.1186/s12876-016-0568-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
55 Oh SY, Kang N, Kang JY, Kim KW, Choi JH, Yang YM, Shin DM. Sestrin2 Regulates Osteoclastogenesis via the p62-TRAF6 Interaction. Front Cell Dev Biol 2021;9:646803. [PMID: 33842470 DOI: 10.3389/fcell.2021.646803] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Ramos VM, Kowaltowski AJ, Kakimoto PA. Autophagy in Hepatic Steatosis: A Structured Review. Front Cell Dev Biol 2021;9:657389. [PMID: 33937257 DOI: 10.3389/fcell.2021.657389] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Katsuragi Y, Ichimura Y, Komatsu M. Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Current Opinion in Toxicology 2016;1:54-61. [DOI: 10.1016/j.cotox.2016.09.005] [Cited by in Crossref: 73] [Cited by in F6Publishing: 25] [Article Influence: 14.6] [Reference Citation Analysis]
58 Medvedev R, Hildt E, Ploen D. Look who's talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33:211-231. [PMID: 27987184 DOI: 10.1007/s10565-016-9376-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
59 Gerresheim GK, Roeb E, Michel AM, Niepmann M. Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells 2019;8:E1410. [PMID: 31717433 DOI: 10.3390/cells8111410] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
60 Endo H, Owada S, Inagaki Y, Shida Y, Tatemichi M. Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Sci Rep 2018;8:10122. [PMID: 29973599 DOI: 10.1038/s41598-018-28074-w] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]