Minireviews
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Cardiol. May 26, 2017; 9(5): 407-415
Published online May 26, 2017. doi: 10.4330/wjc.v9.i5.407
Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: Mechanisms, incidence and identification of patients at risk
Thomas J Cahill, Rajesh K Kharbanda
Thomas J Cahill, Rajesh K Kharbanda, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
Author contributions: Cahill TJ and Kharbanda RK both devised, drafted and revised the manuscript.
Conflict-of-interest statement: We have read and understood BPG’s revision policy on declaration of interests and declare that we have no competing interests.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Rajesh K Kharbanda, Professor, Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom. rajesh.kharbanda@ouh.nhs.uk
Telephone: +44-1865-220325 Fax: +44-1865-740409
Received: October 30, 2016
Peer-review started: November 3, 2016
First decision: January 14, 2017
Revised: January 20, 2017
Accepted: March 12, 2017
Article in press: March 13, 2017
Published online: May 26, 2017
Abstract

Myocardial infarction (MI) remains the most common cause of heart failure (HF) worldwide. For almost 50 years HF has been recognised as a determinant of adverse prognosis after MI, but efforts to promote myocardial repair have failed to translate into clinical therapies. Primary percutaneous coronary intervention (PPCI) has driven improved early survival after MI, but its impact on the incidence of downstream HF is debated. The effects of PPCI are confounded by the changing epidemiology of MI and HF, with an ageing patient demographic, an increasing proportion of non-ST-elevation myocardial infarction, and the recognition of HF with preserved ejection fraction. Herein we review the mechanisms of HF after MI and discuss contemporary data on its incidence and outcomes. We review current and emerging strategies for early detection of patients at risk of HF after MI, with a view to identification of patient cohorts for novel therapeutic agents.

Keywords: Angioplasty, Heart failure, Myocardial infarction, Percutaneous coronary intervention, ST-elevation myocardial infarction

Core tip: Heart failure (HF) is a major cause of late morbidity and mortality after myocardial infarction. Several approaches exist for early identification of patients at risk of HF, including clinical and angiographic scoring, cardiac imaging, and invasive coronary physiology, but these are currently poorly integrated. Here we provide an overview of the incidence, mechanisms, and outcomes of HF following myocardial infarction in the era of primary percutaneous coronary intervention, and discuss HF risk-stratification for the individual patient. Looking ahead, accurate and early prediction of HF will allow targeting of novel therapeutic agents to high-risk patients before ventricular remodelling and clinical HF have become established.