Search Article Keyword:  

PubMed Submission Abstract PDF  Cover Contents Editorial Board Count: 492 Download Count: 348 

ISSN 1007-9327 CN 14-1219/R  World J Gastroenterol  2010 April 28; 16(16): 1943-1952

EDITORIAL

Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization


Takumi Kawaguchi, Michio Sata


Takumi Kawaguchi, Michio Sata, Department of Digestive Disease Information & Research and Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan

Author contributions: Kawaguchi T and Sata M contributed equally to this paper.

Supported by (in part) A Grant-in-Aid for Young Scientists (B), No. 19790643 to Kawaguchi T and a Grant-in-Aid for Scientific Research (C), No. 21590865 to Sata M, from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by Health and Labour Sciences Research Grants for Research on Hepatitis from the Ministry of Health, Labour and Welfare of Japan, and by a Grant for Cancer Research from Fukuoka Cancer Society

Correspondence to: Takumi Kawaguchi, MD, PhD, Assistant Professor, Department of Digestive Disease Information & Research and Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011,

Japan. takumi@med.kurume-u.ac.jp

Telephone: +81-942-317902  Fax: +81-942-317820

Received: January 25, 2010   Revised: February 11, 2010

Accepted: February 18, 2010

Published online: April 28, 2010

  

Abstract

Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched-chain amino acids as a unique insulin-sensitizing strategy for patients with HCV-associated insulin resistance.

 

© 2010 Baishideng. All rights reserved.

 

Key words: Hepatitis C virus; Diabetes mellitus; Insulin resistance; Complications; Treatments; Branched-chain amino acid

 

Peer reviewer: Atsushi Tanaka, MD, PhD, Associate Professor, Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan

 

Kawaguchi T, Sata M. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization. World J Gastroenterol 2010; 16(16): 1943-1952  Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i16/1943.htm  DOI: http://dx.doi.org/10.3748/wjg.v16.i16.1943

  

INTRODUCTION

Insulin resistance is frequently seen in patients with hepatitis C virus (HCV) infection[1,2]. Although in the general population, lack of exercise and overeating are major causes of insulin resistance, in patients with HCV infection, hepatic inflammation, activated inflammatory cytokines, and HCV-induced impairments of insulin and lipid signaling molecules are also important factors for the development of insulin resistance[3-14]. Therefore, the prevalence of insulin resistance is higher in patients with HCV infection compared to that in the general population and patients with other hepatobiliary disorders[6,15].

Generally, insulin resistance results in the develop­ment of type 2 diabetes mellitus and increases the risk of life-threatening complications such as cardiovascular diseases, renal failure, and infections. However, these complications are not major causes of death in cirrhotic patients with insulin resistance[16]. On the other hand, the development of intrahepatic complications, including hepatocellular carcinoma (HCC), is known to be associated with insulin resistance[17-21]. Insulin resistance is also reported to be involved in the development of extrahepatic manife­stations of HCV infection including gastric cancer[22-24].

Reduction of fasting blood glucose and hemoglobin A1c (HbA1c) is a well-established therapeutic strategy for prevention of complications in diabetic patients[25,26]. However, in patients with chronic liver diseases, fasting blood glucose and HbA1c are not always available for evaluation of glucose metabolism because of decreased hepatic glycogen content[27] and increased turnover of hemoglobin[28]. Furthermore, an association between the use of exogenous insulin or sulfonylurea agents and the development of HCC has recently been reported[29,30]. Although therapeutic guidelines for inhibiting the distinctive complications of HCV-associated insulin resistance are not yet available, amelioration of insulin resistance is considered to inhibit complications and improve prognosis. Here, we summarize treatments that could reduce HCV-associated insulin resistance.

In this review, we summarize distinctive compli­cations of, and therapeutic strategies for, HCV-associated insulin resistance. In addition, we discuss the merits of branched-chain amino acid (BCAA) supplementation as a unique insulin-sensitizing strategy for patients with HCV-associated insulin resistance.

 

DISTINCTIVE COMPLICATIONS OF HCV-ASSOCIATED INSULIN RESISTANCE

Complications of HCV-associated insulin resistance are different from those of lifestyle-associated insulin resistance[16]. Cardiovascular diseases are major causes of death in patients with lifestyle-associated insulin resistance[31]. However, these complications are not major causes of death in patients with HCV-associated insulin resistance[16]. In contrast, HCV-associated insulin resistance is involved in the development of various complications associated with HCV infection. Here, we summarize events associated with insulin resistance that are distinctive complications of HCV-associated insulin resistance (Figure 1).

 

Hepatic steatosis

Hepatic steatosis is commonly observed[32,33] and is an independent risk factor for disease progression in patients with HCV infection[34]. Various mechanisms are operative in the development of hepatic steatosis. HCV core protein induces production of reactive oxygen species and lipid peroxidation[35]. HCV core protein also regulates secretion of very low-density lipoprotein, triglycerides, and apoliprotein B through regulation of fatty acid synthase, microsomal triglyceride transport protein, peroxisome proliferator-activated receptor g (PPARg), and sterol regulatory element binding protein-1c[9,36-38]. Thus, HCV itself is directly involved in the development of hepatic steatosis. In addition, insulin is an anabolic hormone and promotes hepatic lipogenesis through activation of hydroxymethylglutaryl-CoA reductase and acetyl-CoA carboxylase[39]. In addition, insulin inhibits lipolysis through regulation of phosphodiesterase type 3B[19]. In HCV core gene transgenic mice, the development of insulin resis­tance precedes the development of hepatic steatosis, sug­gesting that insulin resistance may induce hepatic steatosis[8,40]. However, hepatic steatosis could also cause insulin resistance[41,42], and therefore, the initial step in HCV-related metabolic disorders remains unclear in patients with HCV infection.

 

Resistance to anti-viral treatment

Insulin resistance is associated with a poor response to anti-viral treatment in patients with HCV genotype 1, 2, and 3 infections[10,43-46]. Although the reason for an asso­ciation between insulin resistance and resistance to anti-viral treatment is largely unknown, the following are possibilities. Insulin resistance is known to increase hepatic lipid synthesis[47]. Since the lipid droplet is an important organelle for HCV replication[48], accumulation of hepatic lipid droplets may increase HCV replication and result in poor responses to anti-viral treatment, even in patients with HCV genotype 2 and 3[45].

Alternatively, HCV core protein is reported to upregulate suppressor of cytokine signaling (SOCS) 3[6,49-52], which acts as an adaptor to facilitate the ubiquitination of signaling proteins, leading to subsequent proteasomal degradation of SOCS3[19]. HCV core protein-induced SOCS3 upregulation promotes proteasomal degradation of insulin receptor substrate (IRS) 1 and IRS2, resulting in the development of insulin resistance in patients with HCV infection[6,19,44]. Simultaneously, SOCS3 is also known to inhibit interferon-alpha-induced expression of the anti-viral proteins 2',5'-oligoadenylate synthetase and myxovirus resistance A through inactivation of Janus kinase, a signal transducer and activator of the transcription pathway[49]. Thus, SOCS3 seems to be a key molecule for a cross-talk between insulin resistance and resistance in patients with HCV infection. In fact, hepatic expression of SOCS3 has predictive value for the outcome of anti-viral therapy in patients with HCV infection[53,54].

 

Hepatic fibrosis and esophageal varices

Insulin resistance is closely associated with progression of hepatic fibrosis in patients with HCV infection[6,11,55]. The hepatocyte is known to degrade circulating insulin, and, therefore, hepatic fibrosis may reduce insulin clearance, resulting in increased serum insulin levels regardless of the presence of insulin resistance[56]. However, insulin resistance is seen in early stages of chronic hepatitis C[6]. Furthermore, even in patients that have received a liver transplantation for HCV-related liver cirrhosis, insulin resistance is a risk factor for rapid progression of hepatic fibrosis[57]. These findings suggest that insulin resistance promotes hepatic fibrosis. Insulin resistance may directly affect hepatic stellate cells and increase connective tissue growth factor (CTGF), which causes production of extracellular matrix[58]. Alternatively, insulin resistance-induced hepatic lipid accumulation may increase oxidative stress, resulting in progression of hepatic fibrosis[32].

Insulin resistance is also a risk factor for esophageal varices in cirrhotic patients with HCV infection[59]. As the hepatic fibrosis is correlated with the development of esophageal varices, insulin resistance may be associated with the development of esophageal varices through progression of hepatic fibrosis[60]. In addition, insulin modulates the endothelial synthesis of nitric oxide and endothelin[61], regulators of sinusoidal blood flow[62]. Thus, insulin-induced hepatic fibrosis and vasoconstriction may be possible mechanisms for the development of esophageal varices.

 

Hepatocarcinogenesis and proliferation of HCC

Liver cirrhosis, aging, and being a male are well-known risk factors for the development of HCC in patients with HCV infection[18,63]. In addition, insulin resistance is now recognized as an independent risk factor for the development of HCC worldwide[18,63]. Diabetes is reported as the only independent risk factor for HCC in patients with chronic hepatitis C[21]. Moreover, development of diabetes-related HCC is reported to be independent of viral hepatitis and alcoholism[64]. These findings suggest that insulin resistance has direct effects on hepatocarcinogenesis. Although precise mecha­nisms for this effect remain unclear, the following explana­tions may be put forward. Insulin resistance causes lipid accumulation[19]. Visceral adiposity results in changes in serum adipocytokine levels, including reduction of adiponectin, which suppresses effects for hepatocar­cinogenesis[65]. Hepatic lipid accumulation also increases oxidative stress, which may be responsible for the deve­lopment of HCC[18,63]. Besides these possibilities, insulin has a mitogenic effect[19,30], suggesting that insulin may be directly linked to hepatocarcinogenesis[19].

Insulin resistance may be associated not only with hepatocarcinogenesis, but also with proliferation of HCC. We have examined the significance of insulin resistance on the prognosis in patients with HCV-asso­ciated HCC and found that insulin resistance is an independent risk factor for poor prognosis[20]. As no significant difference was seen in disease-free survival between patients with and without insulin resistance, these findings indicate that insulin resistance accelerates the proliferation of HCC[20]. In good accordance with our results, Saito et al[66] reported that reduction of serum insulin levels by continuous infusion of octreotide significantly suppressed proliferation of HCC. Although the mechanisms for insulin-induced proliferation of HCC remain obscure, insulin exerts growth-promoting activity through activation of a mitogen-activated pro­tein kinase pathway[19]. In addition, overexpression of transducing molecules for insulin signaling, IRS1[67] and IRS2[68], and downregulation of suppressing molecules for insulin signaling, phosphatase and tensin homologue[69], and SH2 domain-containing inositol phosphatase- 2[20] occur in HCC. Thus, HCC may be sensitive to insulin stim­ulation.

 

Extrahepatic manifestations

HCV causes extrahepatic manifestations including mixed cryoglobulinemia, Sjögren’s syndrome, and non-Hodgkin lymphoma, oral lichen planus, oral squamous cell carci­noma, and malignancies other than HCC[22-24,70-73]. In patients with extrahepatic manifestations of HCV, fasting insulin levels and homeostasis model assessment for insulin resistance are significantly higher than for patients without extrahepatic manifestations[22]. Among various extrahepatic manifestations, insulin resistance is associated with oral lichen planus[23], oral squamous cell carcinoma[24], and multiple primary cancers including gastric cancer[24]. Although reasons for this association remain unclear, a high prevalence of precancerous lesions and cancers are seen in patients with type 2 diabetes mellitus[74,75], sugge­sting that insulin resistance or hyperinsulinemia may enh­ance carcinogenic activities.

 

DISTINCTIVE THERAPEUTIC STRATEGY FOR HCV-ASSOCIATED INSULIN RESISTANCE

Despite awareness of the increased risk of insulin resistance, therapeutic guidelines to inhibit distinctive complications of HCV-associated insulin resistance have not yet been established. HCV itself has a significant impact on the development of insulin resistance, and eradication of HCV improves insulin resistance[44,46,76]. Thus, anti-viral therapy is a fundamental therapeutic strategy for patients with HCV infection. In addition, amelioration of insulin resistance is considered to inhibit complications and improve prognosis. Here, we summarize treatments which could improve HCV-associated insulin resistance as therapeutic strategies (Figure 1).

 

Late evening snack

Proper diet and exercise are fundamental for patients with lifestyle-associated insulin resistance as well as patients with HCV-associated insulin resistance[77-80]. As a nutritional treatment for liver cirrhosis, divided energy intake (4 to 6 meals/d) has been recommended[77,79]. As postprandial hyperglycemia is characteristic of HCV-associated insulin resistance[77-80], a decrease in energy intake per meal redu­ces postprandial hyperglycemia and hyperinsulinemia. In particular, a late evening snack is reported not only to improve glucose intolerance[81-84], but also to suppress hepa­tocar­cinogenesis in cirrhotic patients[85].

 

Coffee consumption

Coffee consumption reduces the risk of elevated serum alanine aminotransferase activity[86], hepatic fibrosis[87], and disease progression in chronic hepatitis C[88]. Coffee consumption also reduces the risk of HCC indepen­dent of HCC etiology[89]. Caffeine is metabolized by hepa­tic cytochrome P450 1A2 into 3 metabolites, the dimethy­lxanthines paraxanthine, theobromine, and theo­phylline. Of these metabolites, theophylline inhibits trans­­forming growth factor-b-stimulated CTGF expre­ssion through PPARg and Smad 2/3-dependent pathways. Since CTGF and transforming growth factor-b are important factors associated with progression of hepatic fibrosis and hepa­to­carcinogenesis, a metabolite of caffeine, theophylline, may have an inhibitory effect on the development of complications associated with HCV infection. In addition, coffee has significant effects on glucose metabolism[90]. In an animal experiment, the insulin-sensitizing effects of coffee have been demon­strated[91]. Similarly, in a human study, coffee consumption reduced fasting glucose and insulin levels[90,92]. Although the mechanisms for the coffee-induced insulin-sensitizing effect remain unclear, some possibilities exist. Chlorogenic acids, a constituent of coffee, inhibits hepatic glucose-6-phosphate translocation[90,93], limits glucose absorption from the gut by inhibiting Na+-dependent transport[94], and increases the secretion of glucose regulating hormone, glucagon-like peptide (GLP)-1, from the gut[90,95,96]. These findings suggest that a constituent of coffee, chlorogenic acid, directly ameliorates HCV-asso­ciated insulin resistance. Furthermore, coffee modulates lipid metabolism[97,98] and lowers body weight[90], indicating that coffee may suppress the lipid-induced increase in oxidative stress and ameli­orates HCV-associated insulin resistance.

 

Phlebotomy

Hepatic iron overload produces oxidative stress and is a factor responsible for the development of HCV-associated insulin resistance[4,99-101]. Although the pathogenesis of hepatic iron overload remains unclear, recent studies showed that iron-regulating molecules are modulated by HCV infection. Hepcidin is a negative regulator of duo­denal iron absorption and macrophage iron release[100] and decreased hepatic expression of hepcidin is seen in both HCV polyprotein transgenic mice[102] and patients with HCV infection[103-105]. In addition, upregulation of hepatic expression of transferrin receptor 2, a mediator of iron uptake, is responsible for hepatic iron overload[106].

In order to reduce hepatic iron deposition, dietary iron restriction and phlebotomy are effective. Dietary iron restriction (less than 7 mg/d) decreases serum alanine aminotransferase levels in patients with HCV infection[107]. Phlebotomy reduces oxidative stress as well as insulin resistance in patients with HCV infection[101,108,109]. A long-term combination treatment with phlebotomy and dietary iron restriction reduces the risk of development of HCC in patients with HCV infection[110].

 

Supplementation of zinc

Zinc plays a crucial role in the metabolism of protein, carbohydrate, lipid, nucleic acid, and ammonia[111-113]. In fact, zinc supplementation improves glucose disposal in patients with cirrhosis[114]. Zinc also inhibits hepatic inflammation[115] and hepatic fibrosis[116]. More recently, zinc supplementation was shown to lower the cumulative incidence of HCC in patients with HCV infection[117]. It is unclear whether these inhibitory effects of zinc on progression of liver disease are mediated by amelioration of insulin resistance. However, zinc participates in the synthesis, storage and secretion of insulin[118] and regulates the binding ability of insulin to bind to its receptor[113]. As the serum zinc level is decreased in patients with HCV infection[115,117], supplementation of zinc could be a therapeutic option.

 

Anti-diabetic agents

Exogenous insulin and sulfonylurea agents: Anti-diabetic agents are effective for decreasing plasma glucose and HbA1c levels, leading to prevention of diabetes mellitus-associated complications including cardiovascular diseases[119,120]. However, it has never been determined whether anti-diabetic agents prevent complications or improve prognosis in patients with HCV infection. Use of exogenous insulin or sulfonylurea agents may worsen hyperinsulinemia. In fact, we, along with others, recently reported an association between exogenous insulin or sulphonylurea treatment and the development of HCC in patients with HCV infection[29,30,121]. Use of exogenous insulin is also reported to be associated with the development of colon cancer[122] and other malignancies[123]. Although a causal relationship between exogenous insulin and the development of HCC remains controversial[124], the reduction of serum insulin levels is a first line therapeutic strategy for insulin resistance[125-128].

 

Insulin-sensitizing agents: Insulin resistance is associated with a poor response to anti-viral treatment in patients with HCV infection[10,43-46]. Amelioration of insulin resistance may improve the response to anti-viral treatment. However, the impact of insulin-sensitizing agents, biguanides and thiazolidinediones, on sustained virologic response (SVR) rates has not yet been established. Recently, metformin, a biguanide agent, has been reported to ameliorate HCV-associated insulin resistance, and increase the SVR rate in HCV genotype 1 infected patients with normalization of homeostasis model assessment for insulin resistance at week 24 of therapy[129]. Pioglitazone, a thiazolidinedione agent, has also been reported to ameliorate insulin resistance and increase SVR rates in patients with HCV genotype 4 infection[130]. Although the insulin-sensitizing mechanisms of metformin and pioglitazone are different, both agents are known to upregulate IRS[131,132], which is the molecule responsible for HCV-associated insulin resistance[3,6,50], and to improve HCV-associated insulin resistance. Because both agents have severe adverse effects, neither is recommended for patients with liver cirrhosis. Biguanides predispose cirrhotic patients to lactic acidosis[133]. Thiazolidinediones cause overproduction of hydrogen peroxide leading to severe hepatotoxicity[134]. Thus, further validation for safety is required.

Dipeptidyl peptidase (DPPIV) inhibitor is a new therapeutic agent[135] and its clinical efficacy in type 2 diabetes has been shown[136]. Although no study has examined the effect of DPPIV inhibitor on HCV-asso­ciated insulin resistance, we found that activation of DPPIV is a factor responsible for HCV-associated insulin resistance[27]. Thus, a DPPIV inhibitor may be suited for ameliorating HCV-associated insulin resistance.

 

BCAA supplementation, a possible insulin-sensitizing agent

BCAA are constituents of proteins and are required for protein synthesis[19,78,137,138]. In addition, BCAA are reported to modulate glucose metabolism. Leucine and isoleucine induce glucose transporter 1 and 4 translocation to the plasma membrane of muscle cells and improve glucose metabolism in a carbon tetrachloride-induced cirrhotic rat model[139]. In addition, leucine enhances the insulin-induced activation of the Akt/mammalian target of the rapamycin pathway in adipocytes of db/db mice[140]. Moreover, isoleucine increases hepatic phosphatidylinositol 3-kinase activity and improves insulin resistance in Zucker fa/fa rats, a model of severe insulin resistance[141]. Recently, knockout of the mitochondrial BCAA aminotransferase gene in mice, in which results in elevated plasma BCAA levels, was found to ameliorate insulin resistance[142]. Thus, BCAA improve insulin signaling in various animal models via several pathways. In good agreement with these results in animals, in human studies, we have recently shown that BCAA-enriched supplementation reduces insulin resistance in patients with HCV infection[143,144]. In a multicenter, randomized, controlled trial, BCAA supplementation led to a reduction in the risk of HCC in cirrhotic patients[145]. This suppressive effect on hepatocarcinogenesis was more evident in obese patients with HCV infection[145]. Both obesity and HCV induce the development of insulin resistance. Thus, BCAA may improve insulin resistance and subsequently inhibit insulin resistance-induced hepatocarcinogenesis[19,145].

 

CONCLUSION

In this review, we summarize the distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Although cardiovascular diseases, renal failure, and infections are well-known complications of lifestyle-associated insulin resistance, these complications are not major causes of death in cirrhotic patients with insulin resistance. HCV-associated insulin resistance rather causes (1) hepatic steatosis, (2) resistance to anti-viral treatment, (3) hepatic fibrosis and esophageal varices, (4) hepatocarcinogenesis and proliferation of HCC, and (5) extrahepatic manifestations. These complications are life-threatening, and therapeutic strategies for HCV-associated insulin resistance have to be considered on the basis of its pathogenic mechanisms.

Pathogenic mechanisms for HCV-associated insulin resistance differ from those for lifestyle-associated insulin resistance. Postprandial hyperglycemia, lipid-induced oxi­dative stress, hepatic iron overload, and depletion of zinc are responsible for the development of HCV-associated insulin resistance. Therefore, a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and supplementation of zinc are recommended therapeutic strategies. No clinical guidelines for the use of anti-diabetic agents are available for patients with HCV-associated insulin resistance. However, use of exogenous insulin or sulphonylurea may increase the risk for HCC. On the other hand, insulin-sensitizing agents may improve the SVR rate of anti-viral treatment. In addition, BCAA supplementation has an insulin-sensitizing effect as well as a suppressive effect on hepatocarcinogenesis. Thus, in order to ameliorate HCV-associated insulin resistance, various therapeutic approaches are required.

 

REFERENCES

1      Allison ME, Wreghitt T, Palmer CR, Alexander GJ. Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population. J Hepatol 1994; 21: 1135-1139

2       Caronia S, Taylor K, Pagliaro L, Carr C, Palazzo U, Petrik J, O'Rahilly S, Shore S, Tom BD, Alexander GJ. Further evidence for an association between non-insulin-dependent diabetes mellitus and chronic hepatitis C virus infection. Hepatology 1999; 30: 1059-1063

3      Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Imp­aired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 2003; 38: 1384-1392

4      Furutani M, Nakashima T, Sumida Y, Hirohama A, Yoh T, Kakisaka Y, Mitsuyoshi H, Senmaru H, Okanoue T. Insulin resistance/beta-cell function and serum ferritin level in non-diabetic patients with hepatitis C virus infection. Liver Int 2003; 23: 294-299

5      Maeno T, Okumura A, Ishikawa T, Kato K, Sakakibara F, Sato K, Ayada M, Hotta N, Tagaya T, Fukuzawa Y, Kakumu S. Mechanisms of increased insulin resistance in non-cirr­hotic patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 2003; 18: 1358-1363

6      Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, Taniguchi E, Kumemura H, Hanada S, Maeyama M, Baba S, Koga H, Kumashiro R, Ueno T, Ogata H, Yoshimura A, Sata M. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol 2004; 165: 1499-1508

7      Narita R, Abe S, Kihara Y, Akiyama T, Tabaru A, Otsuki M. Insulin resistance and insulin secretion in chronic hepatitis C virus infection. J Hepatol 2004; 41: 132-138

8      Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, Moriya K, Koike K. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 2004; 126: 840-848

9      Negro F. Mechanisms and significance of liver steatosis in hepatitis C virus infection. World J Gastroenterol 2006; 12: 6756-6765

10    Romero-Gómez M. Insulin resistance and hepatitis C. World J Gastroenterol 2006; 12: 7075-7080

11    Taura N, Ichikawa T, Hamasaki K, Nakao K, Nishimura D, Goto T, Fukuta M, Kawashimo H, Fujimoto M, Kusumoto K, Motoyoshi Y, Shibata H, Abiru N, Yamasaki H, Eguchi K. Association between liver fibrosis and insulin sensitivity in chronic hepatitis C patients. Am J Gastroenterol 2006; 101: 2752-2759

12    Tuma P, Vispo E, Barreiro P, Soriano V. [Role of tenofovir in HIV and hepatitis C virus coinfection] Enferm Infecc Microbiol Clin 2008; 26 Suppl 8: 31-37

13    Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Kumada H. Amino acid subs­titutions in the hepatitis C virus core region of genotype 1b are the important predictor of severe insulin resistance in patients without cirrhosis and diabetes mellitus. J Med Virol 2009; 81: 1032-1039

14    Eguchi Y, Mizuta T, Ishibashi E, Kitajima Y, Oza N, Naka­shita S, Hara M, Iwane S, Takahashi H, Akiyama T, Ario K, Kawaguchi Y, Yasutake T, Iwakiri R, Ozaki I, Hisatomi A, Eguchi T, Ono N, Fujimoto K. Hepatitis C virus infection enhances insulin resistance induced by visceral fat accumu­lation. Liver Int 2009; 29: 213-220

15    Kawaguchi T, Nagao Y, Tanaka K, Ide T, Harada M, Kumashiro R, Sata M. Causal relationship between hepatitis C virus core and the development of type 2 diabetes mellitus in a hepatitis C virus hyperendemic area: a pilot study. Int J Mol Med 2005; 16: 109-114

16    Bianchi G, Marchesini G, Zoli M, Bugianesi E, Fabbri A, Pisi E. Prognostic significance of diabetes in patients with cirrhosis. Hepatology 1994; 20: 119-125

17    Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut 2005; 54: 533-539

18    El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 2004; 127: S27-S34

19    Kawaguchi T, Yamagishi S, Sata M. Branched-chain amino acids and pigment epithelium-derived factor: novel therapeutic agents for hepatitis c virus-associated insulin resistance. Curr Med Chem 2009; 16: 4843-4857

20     Sumie S, Kawaguchi T, Komuta M, Kuromatsu R, Itano S, Okuda K, Taniguchi E, Ando E, Takata A, Fukushima N, Koga H, Torimura T, Kojiro M, Sata M. Significance of glucose intolerance and SHIP2 expression in hepatocellular carcinoma patients with HCV infection. Oncol Rep 2007; 18: 545-552

21    Tazawa J, Maeda M, Nakagawa M, Ohbayashi H, Kusano F, Yamane M, Sakai Y, Suzuki K. Diabetes mellitus may be associated with hepatocarcinogenesis in patients with chronic hepatitis C. Dig Dis Sci 2002; 47: 710-715

22    Nagao Y, Kawaguchi T, Tanaka K, Kumashiro R, Sata M. Extrahepatic manifestations and insulin resistance in an HCV hyperendemic area. Int J Mol Med 2005; 16: 291-296

23    Nagao Y, Kawasaki K, Sata M. Insulin resistance and lichen planus in patients with HCV-infectious liver diseases. J Gastroenterol Hepatol 2008; 23: 580-585

24    Nagao Y, Sata M. High incidence of multiple primary car­cinomas in HCV-infected patients with oral squamous cell carcinoma. Med Sci Monit 2009; 15: CR453-CR459

25    Franz MJ, Bantle JP, Beebe CA, Brunzell JD, Chiasson JL, Garg A, Holzmeister LA, Hoogwerf B, Mayer-Davis E, Mooradian AD, Purnell JQ, Wheeler M. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002; 25: 148-198

26    Global Guideline for Type 2 Diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med 2006; 23: 579-593

27    Itou M, Kawaguchi T, Taniguchi E, Sumie S, Oriishi T, Mitsuyama K, Tsuruta O, Ueno T, Sata M. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol 2008; 23: 244-251

28    Qamar AA, Grace ND, Groszmann RJ, Garcia-Tsao G, Bosch J, Burroughs AK, Ripoll C, Maurer R, Planas R, Escorsell A, Garcia-Pagan JC, Patch D, Matloff DS, Makuch R, Rendon G. Incidence, prevalence, and clinical significance of abnormal hematologic indices in compensated cirrhosis. Clin Gastroenterol Hepatol 2009; 7: 689-695

29    Donadon V, Balbi M, Ghersetti M, Grazioli S, Perciaccante A, Della Valentina G, Gardenal R, Dal Mas M, Casarin P, Zanette G, Miranda C. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J Gastroenterol 2009; 15: 2506-2511

30    Kawaguchi T, Taniguchi E, Morita Y, Shirachi M, Tateishi I, Nagata E, Sata M. Association of exogenous insulin or sulphonylurea treatment with an increased incidence of hepatoma in patients with hepatitis C virus infection. Liver Int 2009; Epub ahead of print

31    Jansson SP, Andersson DK, Svärdsudd K. Mortality trends in subjects with and without diabetes during 33 years of follow-up. Diabetes Care 2010; 33: 551-556

32    Negro F, Sanyal AJ. Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int 2009; 29 Suppl 2: 26-37

33    Ong JP, Younossi ZM, Speer C, Olano A, Gramlich T, Boparai N. Chronic hepatitis C and superimposed nonalcoholic fatty liver disease. Liver 2001; 21: 266-271

34    Leandro G, Mangia A, Hui J, Fabris P, Rubbia-Brandt L, Colloredo G, Adinolfi LE, Asselah T, Jonsson JR, Smedile A, Terrault N, Pazienza V, Giordani MT, Giostra E, Sonzogni A, Ruggiero G, Marcellin P, Powell EE, George J, Negro F. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 2006; 130: 1636-1642

35    Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA. Hepatitis C virus core protein inhibits mitocho­ndrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 2005; 280: 37481-37488

36    McPherson S, Jonsson JR, Barrie HD, O'Rourke P, Clouston AD, Powell EE. Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis. J Hepatol 2008; 49: 1046-1054

37    Negro F. Peroxisome proliferator-activated receptors and hepatitis C virus-induced insulin resistance. PPAR Res 2009; 2009: 483485

38    Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A, Chrétien Y, Koike K, Pessayre D, Chapman J, Barba G, Bréchot C. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 2002; 16: 185-194

39    Geelen MJ, Harris RA, Beynen AC, McCune SA. Short-term hormonal control of hepatic lipogenesis. Diabetes 1980; 29: 1006-1022

40    Koike K. Hepatitis C as a metabolic disease: Implication for the pathogenesis of NASH. Hepatol Res 2005; 33: 145-150

41    Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277: 3829-3835

42    Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glu­cose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci USA 2001; 98: 13710-13715

43    Cammà C, Bruno S, Di Marco V, Di Bona D, Rumi M, Vinci M, Rebucci C, Cividini A, Pizzolanti G, Minola E, Mondelli MU, Colombo M, Pinzello G, Craxì A. Insulin resistance is associated with steatosis in nondiabetic patients with genotype 1 chronic hepatitis C. Hepatology 2006; 43: 64-71

44    Kawaguchi T, Ide T, Taniguchi E, Hirano E, Itou M, Sumie S, Nagao Y, Yanagimoto C, Hanada S, Koga H, Sata M. Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. Am J Gastroenterol 2007; 102: 570-576

45    Poustchi H, Negro F, Hui J, Cua IH, Brandt LR, Kench JG, George J. Insulin resistance and response to therapy in patients infected with chronic hepatitis C virus genotypes 2 and 3. J Hepatol 2008; 48: 28-34

46    Romero-Gómez M, Del Mar Viloria M, Andrade RJ, Salme­rón J, Diago M, Fernández-Rodríguez CM, Corpas R, Cruz M, Grande L, Vázquez L, Muñoz-De-Rueda P, López-Serr­ano P, Gila A, Gutiérrez ML, Pérez C, Ruiz-Extremera A, Suárez E, Castillo J. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005; 128: 636-641

47    Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000; 6: 77-86

48    Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimo­tohno K. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9: 1089-1097

49    Vlotides G, Sörensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R, Auernhammer CJ. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun 2004; 320: 1007-1014

50    Pazienza V, Clément S, Pugnale P, Conzelman S, Foti M, Mangia A, Negro F. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology 2007; 45: 1164-1171

51    Persico M, Capasso M, Persico E, Svelto M, Russo R, Spano D, Crocè L, La Mura V, Moschella F, Masutti F, Torella R, Tiribelli C, Iolascon A. Suppressor of cytokine signaling 3 (SOCS3) expression and hepatitis C virus-related chronic hepatitis: Insulin resistance and response to antiviral therapy. Hepatology 2007; 46: 1009-1015

52    Del Campo JA, Romero-Gómez M. Steatosis and insulin resistance in hepatitis C: a way out for the virus? World J Gastroenterol 2009; 15: 5014-5019

53    Miyaaki H, Ichikawa T, Nakao K, Matsuzaki T, Muraoka T, Honda T, Takeshita S, Shibata H, Ozawa E, Akiyama M, Miuma S, Eguchi K. Predictive value of suppressor of cytokine signal 3 (SOCS3) in the outcome of interferon therapy in chronic hepatitis C. Hepatol Res 2009; 39: 850-855

54    Walsh MJ, Jonsson JR, Richardson MM, Lipka GM, Purdie DM, Clouston AD, Powell EE. Non-response to antiviral therapy is associated with obesity and increased hepatic expression of suppressor of cytokine signalling 3 (SOCS-3) in patients with chronic hepatitis C, viral genotype 1. Gut 2006; 55: 529-535

55    Muzzi A, Leandro G, Rubbia-Brandt L, James R, Keiser O, Malinverni R, Dufour JF, Helbling B, Hadengue A, Gonvers JJ, Müllhaupt B, Cerny A, Mondelli MU, Negro F. Insulin resistance is associated with liver fibrosis in non-diabetic chronic hepatitis C patients. J Hepatol 2005; 42: 41-46

56    Petrides AS, Vogt C, Schulze-Berge D, Matthews D, Stroh­meyer G. Pathogenesis of glucose intolerance and diabetes mellitus in cirrhosis. Hepatology 1994; 19: 616-627

57    Veldt BJ, Poterucha JJ, Watt KD, Wiesner RH, Hay JE, Rosen CB, Heimbach JK, Janssen HL, Charlton MR. Insulin resistance, serum adipokines and risk of fibrosis progression in patients transplanted for hepatitis C. Am J Transplant 2009; 9: 1406-1413

58    Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B, Vidaud M, Conti M, Huet S, Ba N, Buffet C, Bedossa P. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 2001; 34: 738-744

59    Cammà C, Petta S, Di Marco V, Bronte F, Ciminnisi S, Licata G, Peralta S, Simone F, Marchesini G, Craxì A. Insulin resi­stance is a risk factor for esophageal varices in hepatitis C virus cirrhosis. Hepatology 2009; 49: 195-203

60    Svegliati-Baroni G, De Minicis S, Marzioni M. Hepatic fibro­genesis in response to chronic liver injury: novel insights on the role of cell-to-cell interaction and transition. Liver Int 2008; 28: 1052-1064

61    Vincent MA, Montagnani M, Quon MJ. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr Diab Rep 2003; 3: 279-288

62    Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol 2007; 46: 927-934

63    El-Serag HB. Epidemiology of hepatocellular carcinoma in USA. Hepatol Res 2007; 37 Suppl 2: S88-S94

64    El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004; 126: 460-468

65    Marra F, Bertolani C. Adipokines in liver diseases. Hepatology 2009; 50: 957-969

66    Saito K, Inoue S, Saito T, Kiso S, Ito N, Tamura S, Watanabe H, Takeda H, Misawa H, Togashi H, Matsuzawa Y, Kawata S. Augmentation effect of postprandial hyperinsulinaemia on growth of human hepatocellular carcinoma. Gut 2002; 51: 100-104

67    Nehrbass D, Klimek F, Bannasch P. Overexpression of insulin receptor substrate-1 emerges early in hepatocarcino­genesis and elicits preneoplastic hepatic glycogenosis. Am J Pathol 1998; 152: 341-345

68    Boissan M, Beurel E, Wendum D, Rey C, Lécluse Y, Housset C, Lacombe ML, Desbois-Mouthon C. Overexpression of insulin receptor substrate-2 in human and murine hepato­cellular carcinoma. Am J Pathol 2005; 167: 869-877

69    Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK, Ahsan H, Chen CJ, Lee PH, Peacocke M, Santella RM, Tsou HC. PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene 1999; 18: 3181-3185

70    Nagao Y, Sata M, Noguchi S, Tajiri N, Ono N, Fukuda T, Kameyama T, Ueno T. Various extrahepatic manifestations caused by hepatitis C virus infection. Int J Mol Med 1999; 4: 621-625

71    Nagao Y, Sata M, Tanikawa K, Itoh K, Kameyama T. Lichen planus and hepatitis C virus in the northern Kyushu region of Japan. Eur J Clin Invest 1995; 25: 910-914

72    Nagao Y, Tanaka J, Nakanishi T, Moriya T, Katayama K, Kumagai J, Komiya Y, Itoh Y, Myoken Y, Fujihara M, Sata M, Yoshizawa H. High incidence of extrahepatic manifestations in an HCV hyperendemic area. Hepatol Res 2002; 22: 27-36

73    Ohtsubo K, Sata M, Kawaguchi T, Morishige S, Takata Y, Oku E, Imamura R, Seki R, Hashiguchi M, Osaki K, Yakushiji K, Kanaji T, Yoshimoto K, Ueno T, Okamura T. Characterization of the light chain-restricted clonal B cells in peripheral blood of HCV-positive patients. Int J Hematol 2009; 89: 452-459

74    Husseini A, Abu-Rmeileh NM, Mikki N, Ramahi TM, Ghosh HA, Barghuthi N, Khalili M, Bjertness E, Holmboe-Ottesen G, Jervell J. Cardiovascular diseases, diabetes mellitus, and cancer in the occupied Palestinian territory. Lancet 2009; 373: 1041-1049

75    Ship JA. Diabetes and oral health: an overview. J Am Dent Assoc 2003; 134 Spec No: 4S-10S

76    Kawaguchi Y, Mizuta T, Oza N, Takahashi H, Ario K, Yoshimura T, Eguchi Y, Ozaki I, Hisatomi A, Fujimoto K. Eradication of hepatitis C virus by interferon improves whole-body insulin resistance and hyperinsulinaemia in patients with chronic hepatitis C. Liver Int 2009; 29: 871-877

77    ASPEN Board of Directors and the Clinical Guidelines Task Force. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN J Parenter Enteral Nutr 2002; 26: 1SA-138SA

78    Kato A, Suzuki K. How to select BCAA preparations. Hepatol Res 2004; 30S: 30-35

79    Plauth M, Cabré E, Riggio O, Assis-Camilo M, Pirlich M, Kondrup J, Ferenci P, Holm E, Vom Dahl S, Müller MJ, Nolte W. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin Nutr 2006; 25: 285-294

80    Tajika M, Kato M, Mohri H, Miwa Y, Kato T, Ohnishi H, Moriwaki H. Prognostic value of energy metabolism in patients with viral liver cirrhosis. Nutrition 2002; 18: 229-234

81    Korenaga K, Korenaga M, Uchida K, Yamasaki T, Sakaida I. Effects of a late evening snack combined with alpha-glucosidase inhibitor on liver cirrhosis. Hepatol Res 2008; 38: 1087-1097

82    Okamoto M, Sakaida I, Tsuchiya M, Suzuki C, Okita K. Effect of a late evening snack on the blood glucose level and energy metabolism in patients with liver cirrhosis. Hepatol Res 2003; 27: 45-50

83    Sakaida I, Tsuchiya M, Okamoto M, Okita K. Late evening snack and the change of blood glucose level in patients with liver cirrhosis. Hepatol Res 2004; 30S: 67-72

84    Tsuchiya M, Sakaida I, Okamoto M, Okita K. The effect of a late evening snack in patients with liver cirrhosis. Hepatol Res 2005; 31: 95-103

85    Ohfuji S, Fukushima W, Tanaka T, Habu D, Takeda T, Tamori A, Sakaguchi H, Seki S, Kawada N, Nishiguchi S, Shiomi S, Hirota Y. Does a late evening meal reduce the risk of hepatocellular carcinoma among patients with chronic hepatitis C? Hepatol Res 2008; 38: 860-868

86    Ruhl CE, Everhart JE. Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2005; 128: 24-32

87    Modi AA, Feld JJ, Park Y, Kleiner DE, Everhart JE, Liang TJ, Hoofnagle JH. Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology 2010; 51: 201-209

88    Freedman ND, Everhart JE, Lindsay KL, Ghany MG, Curto TM, Shiffman ML, Lee WM, Lok AS, Di Bisceglie AM, Bonkovsky HL, Hoefs JC, Dienstag JL, Morishima C, Abnet CC, Sinha R. Coffee intake is associated with lower rates of liver disease progression in chronic hepatitis C. Hepatology 2009; 50: 1360-1369

89    Gelatti U, Covolo L, Franceschini M, Pirali F, Tagger A, Ribero ML, Trevisi P, Martelli C, Nardi G, Donato F. Coffee consumption reduces the risk of hepatocellular carcinoma independently of its aetiology: a case-control study. J Hepatol 2005; 42: 528-534

90    Tunnicliffe JM, Shearer J. Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Appl Physiol Nutr Metab 2008; 33: 1290-1300

91    Shearer J, Farah A, de Paulis T, Bracy DP, Pencek RR, Graham TE, Wasserman DH. Quinides of roasted coffee enhance insulin action in conscious rats. J Nutr 2003; 133: 3529-3532

92    Naismith DJ, Akinyanju PA, Szanto S, Yudkin J. The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr Metab 1970; 12: 144-151

93    Gerin I, Van Schaftingen E. Evidence for glucose-6-phos­phate transport in rat liver microsomes. FEBS Lett 2002; 517: 257-260

94    Welsch CA, Lachance PA, Wasserman BP. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 1989; 119: 1698-1704

95    Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 2003; 78: 728-733

96    McCarty MF. A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee con­sumption on diabetes risk. Med Hypotheses 2005; 64: 848-853

97    Heyden S. Does coffee influence the lipid metabolism? Z Ernahrungswiss 1969; 9: 388-396

98    Zeller W. [Effect of coffee on fat metabolism] Med Klin 1968; 63: 707-709

99    Garrido Serrano A, Guerrero Igea FJ, Lepe Jiménez JA, Palomo Gil S, Grilo Reina A. Hepatitis C virus infection, increased serum ferritin and hyperinsulinemia. Rev Esp Enferm Dig 2001; 93: 639-648

100  Lecube A, Hernández C, Simó R. Glucose abnormalities in non-alcoholic fatty liver disease and chronic hepatitis C virus infection: the role of iron overload. Diabetes Metab Res Rev 2009; 25: 403-410

101  Mitsuyoshi H, Itoh Y, Sumida Y, Minami M, Yasui K, Nakashima T, Okanoue T. Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol Res 2008; 38: 348-353

102  Nishina S, Hino K, Korenaga M, Vecchi C, Pietrangelo A, Mizukami Y, Furutani T, Sakai A, Okuda M, Hidaka I, Okita K, Sakaida I. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 2008; 134: 226-238

103  Fujita N, Sugimoto R, Takeo M, Urawa N, Mifuji R, Tanaka H, Kobayashi Y, Iwasa M, Watanabe S, Adachi Y, Kaito M. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol Med 2007; 13: 97-104

104  Nagashima M, Kudo M, Chung H, Ishikawa E, Hagiwara S, Nakatani T, Dote K. Regulatory failure of serum prohe­pcidin levels in patients with hepatitis C. Hepatol Res 2006; 36: 288-293

105  Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: from research to clinic. World J Gastroenterol 2009; 15: 538-551

106    Takeo M, Kobayashi Y, Fujita N, Urawa N, Iwasa M, Horiike S, Tanaka H, Kaito M, Adachi Y. Upregulation of transferrin receptor 2 and ferroportin 1 mRNA in the liver of patients with chronic hepatitis C. J Gastroenterol Hepatol 2005; 20: 562-569

107  Iwasa M, Iwata K, Kaito M, Ikoma J, Yamamoto M, Takeo M, Kuroda M, Fujita N, Kobayashi Y, Adachi Y. Efficacy of long-term dietary restriction of total calories, fat, iron, and protein in patients with chronic hepatitis C virus. Nutrition 2004; 20: 368-371

108  Fujita N, Miyachi H, Tanaka H, Takeo M, Nakagawa N, Kobayashi Y, Iwasa M, Watanabe S, Takei Y. Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev 2009; 18: 424-432

109  Kaito M, Iwasa M, Kobayashi Y, Fujita N, Tanaka H, Gaba­zza EC, Adachi Y, Kojima Y, Nakagawa N, Watanabe S. Iron reduction therapy by phlebotomy reduces lipid peroxi­dation and oxidative stress in patients with chronic hepatitis C. J Gastroenterol 2006; 41: 921-922

110  Kato J, Miyanishi K, Kobune M, Nakamura T, Takada K, Takimoto R, Kawano Y, Takahashi S, Takahashi M, Sato Y, Takayama T, Niitsu Y. Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C. J Gastroenterol 2007; 42: 830-836

111  Hayashi M, Ikezawa K, Ono A, Okabayashi S, Hayashi Y, Shimizu S, Mizuno T, Maeda K, Akasaka T, Naito M, Michida T, Ueshima D, Nada T, Kawaguchi K, Nakamura T, Katayama K. Evaluation of the effects of combination therapy with branched-chain amino acid and zinc supplements on nitrogen metabolism in liver cirrhosis. Hepatol Res 2007; 37: 615-619

112  Katayama K. Ammonia metabolism and hepatic encepha­lopathy. Hepatol Res 2004; 30S: 73-80

113  Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SM. [Role of zinc in insulin resistance] Arq Bras Endocrinol Metabol 2004; 48: 234-239

114  Marchesini G, Bugianesi E, Ronchi M, Flamia R, Thomaseth K, Pacini G. Zinc supplementation improves glucose disposal in patients with cirrhosis. Metabolism 1998; 47: 792-798

115  Himoto T, Hosomi N, Nakai S, Deguchi A, Kinekawa F, Matsuki M, Yachida M, Masaki T, Kurokochi K, Watanabe S, Senda S, Kuriyama S. Efficacy of zinc administration in patients with hepatitis C virus-related chronic liver disease. Scand J Gastroenterol 2007; 42: 1078-1087

116  Takahashi M, Saito H, Higashimoto M, Hibi T. Possible inhibitory effect of oral zinc supplementation on hepatic fibrosis through downregulation of TIMP-1: A pilot study. Hepatol Res 2007; 37: 405-409

117    Matsuoka S, Matsumura H, Nakamura H, Oshiro S, Arakawa Y, Hayashi J, Sekine N, Nirei K, Yamagami H, Ogawa M, Nakajima N, Amaki S, Tanaka N, Moriyama M. Zinc supplem­entation improves the outcome of chronic hepatitis C and liver cirrhosis. J Clin Biochem Nutr 2009; 45: 292-303

118  Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr 1998; 17: 109-115

119  Ajjan RA, Grant PJ. Cardiovascular disease prevention in patients with type 2 diabetes: The role of oral anti-diabetic agents. Diab Vasc Dis Res 2006; 3: 147-158

120  Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Wood­ward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572

121  Komura T, Mizukoshi E, Kita Y, Sakurai M, Takata Y, Arai K, Yamashita T, Ohta T, Shimizu K, Nakamoto Y, Honda M, Takamura T, Kaneko S. Impact of diabetes on recurrence of hepatocellular carcinoma after surgical treatment in patients with viral hepatitis. Am J Gastroenterol 2007; 102: 1939-1946

122  Yang YX, Hennessy S, Lewis JD. Insulin therapy and colore­ctal cancer risk among type 2 diabetes mellitus patients. Gastroenterology 2004; 127: 1044-1050

123    Colhoun HM. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 2009; 52: 1755-1765

124  Kath R, Schiel R, Müller UA, Höffken K. Malignancies in patients with insulin-treated diabetes mellitus. J Cancer Res Clin Oncol 2000; 126: 412-417

125  Fogli-Cawley JJ, Dwyer JT, Saltzman E, McCullough ML, Troy LM, Meigs JB, Jacques PF. The 2005 Dietary Guidelines for Americans and insulin resistance in the Framingham Offspring Cohort. Diabetes Care 2007; 30: 817-822

126  Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Op Reimer WS, Weissberg P, Wood D, Yarnell J, Zamorano JL, Walma E, Fitzgerald T, Cooney MT, Dudina A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Funck-Brentano C, Filippatos G, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Altiner A, Bonora E, Durrington PN, Fagard R, Giampaoli S, Hemingway H, Hakansson J, Kjeldsen SE, Larsen ML, Mancia G, Manolis AJ, Orth-Gomer K, Pedersen T, Rayner M, Ryden L, Sammut M, Schneiderman N, Stalenhoef AF, Tokgözoglu L, Wiklund O, Zampelas A. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil 2007; 14 Suppl 2: E1-E40

127  Haupt A, Häring HU, Matthaei S. [National practice guide­lines. New aspects in therapy of type 2 diabetes mellitus] MMW Fortschr Med 2003; 145: 41-46

128  Melkersson KI, Dahl ML, Hulting AL. Guidelines for pre­vention and treatment of adverse effects of antipsychotic drugs on glucose-insulin homeostasis and lipid metabolism. Psychopharmacology (Berl) 2004; 175: 1-6

129  Romero-Gómez M, Diago M, Andrade RJ, Calleja JL, Salm­erón J, Fernández-Rodríguez CM, Solà R, García-Samaniego J, Herrerías JM, De la Mata M, Moreno-Otero R, Nuñez O, Olveira A, Durán S, Planas R. Treatment of insulin resistance with metformin in naïve genotype 1 chronic hepatitis C pati­ents receiving peginterferon alfa-2a plus ribavirin. Hepatology 2009; 50: 1702-1708

130  Khattab M, Emad M, Abdelaleem A, Eslam M, Atef R, Shaker Y, Hamdy L. Pioglitazone improves virological response to peginterferon alpha-2b/ribavirin combination therapy in hepatitis C genotype 4 patients with insulin resistance. Liver Int 2009; Epub ahead of print

131  Smith U, Gogg S, Johansson A, Olausson T, Rotter V, Svalstedt B. Thiazolidinediones (PPARgamma agonists) but not PPARalpha agonists increase IRS-2 gene expression in 3T3-L1 and human adipocytes. FASEB J 2001; 15: 215-220

132  Yuan L, Ziegler R, Hamann A. Metformin modulates insulin post-receptor signaling transduction in chronically insulin-treated Hep G2 cells. Acta Pharmacol Sin 2003; 24: 55-60

133  Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574-579

134  Shishido S, Koga H, Harada M, Kumemura H, Hanada S, Taniguchi E, Kumashiro R, Ohira H, Sato Y, Namba M, Ueno T, Sata M. Hydrogen peroxide overproduction in megamitochondria of troglitazone-treated human hepato­cytes. Hepatology 2003; 37: 136-147

135  Deacon CF, Holst JJ. Dipeptidyl peptidase IV inhibitors: a promising new therapeutic approach for the management of type 2 diabetes. Int J Biochem Cell Biol 2006; 38: 831-844

136  DeFronzo RA, Fleck PR, Wilson CA, Mekki Q. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 2008; 31: 2315-2317

137  Suzuki K, Suzuki K, Koizumi K, Ichimura H, Oka S, Takada H, Kuwayama H. Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease. Hepatol Res 2008; 38: 267-272

138  Moriwaki H, Miwa Y, Tajika M, Kato M, Fukushima H, Shiraki M. Branched-chain amino acids as a protein- and energy-source in liver cirrhosis. Biochem Biophys Res Commun 2004; 313: 405-409

139  Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1292-G1300

140  Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB J 2004; 18: 1894-1896

141  Broca C, Breil V, Cruciani-Guglielmacci C, Manteghetti M, Rouault C, Derouet M, Rizkalla S, Pau B, Petit P, Ribes G, Ktorza A, Gross R, Reach G, Taouis M. Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am J Physiol Endocrinol Metab 2004; 287: E463-E471

142  She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 2007; 6: 181-194

143  Kawaguchi T, Nagao Y, Matsuoka H, Ide T, Sata M. Branched-chain amino acid-enriched supplementation improves insulin resistance in patients with chronic liver disease. Int J Mol Med 2008; 22: 105-112

144  Kawaguchi T, Taniguchi E, Itou M, Sumie S, Oriishi T, Matsuoka H, Nagao Y, Sata M. Branched-chain amino acids improve insulin resistance in patients with hepatitis C virus-related liver disease: report of two cases. Liver Int 2007; 27: 1287-1292

145  Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, Kato M, Nakamura T, Higuchi K, Nishiguchi S, Kumada H, Ohashi Y. Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatol Res 2006; 35: 204-214

 

S- Editor  Wang YR    L- Editor  Cant MR    E- Editor  Ma WH

 

 

 

 

 

Reviews Add
more>>


Related Articles:
more>>